These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 39316496)

  • 21. IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection traffic signal control.
    Yang S; Yang B; Kang Z; Deng L
    Neural Netw; 2021 Jul; 139():265-277. PubMed ID: 33838602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metapath-Based Deep Convolutional Neural Network for Predicting miRNA-Target Association on Heterogeneous Network.
    Luo J; Bao Y; Chen X; Shen C
    Interdiscip Sci; 2021 Dec; 13(4):547-558. PubMed ID: 34170473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PCP-GC-LM: single-sequence-based protein contact prediction using dual graph convolutional neural network and convolutional neural network.
    Ouyang J; Gao Y; Yang Y
    BMC Bioinformatics; 2024 Sep; 25(1):287. PubMed ID: 39223474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NGCN: Drug-target interaction prediction by integrating information and feature learning from heterogeneous network.
    Cao J; Chen Q; Qiu J; Wang Y; Lan W; Du X; Tan K
    J Cell Mol Med; 2024 Apr; 28(7):e18224. PubMed ID: 38509739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities.
    Jiang L; Sun J; Wang Y; Ning Q; Luo N; Yin M
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35224614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction.
    Gao M; Zhang D; Chen Y; Zhang Y; Wang Z; Wang X; Li S; Guo Y; Webb GI; Nguyen ATN; May L; Song J
    Comput Biol Med; 2024 May; 173():108339. PubMed ID: 38547658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-scale topology and position feature learning and relationship-aware graph reasoning for prediction of drug-related microbes.
    Xuan P; Gu J; Cui H; Wang S; Toshiya N; Liu C; Zhang T
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38269610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The storage capacity of a directed graph and nodewise autonomous, ubiquitous learning.
    Wei H; Li F
    Front Comput Neurosci; 2023; 17():1254355. PubMed ID: 37927548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph.
    Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DAHNGC: A Graph Convolution Model for Drug-Disease Association Prediction by Using Heterogeneous Network.
    Zhong J; Cui P; Zhu Y; Xiao Q; Qu Z
    J Comput Biol; 2023 Sep; 30(9):1019-1033. PubMed ID: 37702623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GNNGL-PPI: multi-category prediction of protein-protein interactions using graph neural networks based on global graphs and local subgraphs.
    Zeng X; Meng FF; Wen ML; Li SJ; Li Y
    BMC Genomics; 2024 May; 25(1):406. PubMed ID: 38724906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AMGDTI: drug-target interaction prediction based on adaptive meta-graph learning in heterogeneous network.
    Su Y; Hu Z; Wang F; Bin Y; Zheng C; Li H; Chen H; Zeng X
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38145949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Location-aware convolutional neural networks for graph classification.
    Wang Z; Cao Q; Shen H; Xu B; Cen K; Cheng X
    Neural Netw; 2022 Nov; 155():74-83. PubMed ID: 36041282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CGINet: graph convolutional network-based model for identifying chemical-gene interaction in an integrated multi-relational graph.
    Wang W; Yang X; Wu C; Yang C
    BMC Bioinformatics; 2020 Nov; 21(1):544. PubMed ID: 33243142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions.
    Wang H; Huang F; Xiong Z; Zhang W
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35641162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.
    Peng W; Liu H; Dai W; Yu N; Wang J
    Bioinformatics; 2022 Sep; 38(19):4546-4553. PubMed ID: 35997568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Drug-target affinity prediction with extended graph learning-convolutional networks.
    Qi H; Yu T; Yu W; Liu C
    BMC Bioinformatics; 2024 Feb; 25(1):75. PubMed ID: 38365583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MEAHNE: miRNA-Disease Association Prediction Based on Semantic Information in a Heterogeneous Network.
    Huang C; Cen K; Zhang Y; Liu B; Wang Y; Li J
    Life (Basel); 2022 Oct; 12(10):. PubMed ID: 36295013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.