These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39316498)
1. Improving Antifreeze Proteins Prediction with Protein Language Models and Hybrid Feature Extraction Networks. Wu J; Liu Y; Zhu Y; Yu DJ IEEE/ACM Trans Comput Biol Bioinform; 2024 Sep; PP():. PubMed ID: 39316498 [TBL] [Abstract][Full Text] [Related]
2. VotePLMs-AFP: Identification of antifreeze proteins using transformer-embedding features and ensemble learning. Qi D; Liu T Biochim Biophys Acta Gen Subj; 2024 Dec; 1868(12):130721. PubMed ID: 39426757 [TBL] [Abstract][Full Text] [Related]
3. AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information. Ali F; Akbar S; Ghulam A; Maher ZA; Unar A; Talpur DB Comput Biol Med; 2021 Dec; 139():105006. PubMed ID: 34749096 [TBL] [Abstract][Full Text] [Related]
5. AFP-LSE: Antifreeze Proteins Prediction Using Latent Space Encoding of Composition of k-Spaced Amino Acid Pairs. Usman M; Khan S; Lee JA Sci Rep; 2020 Apr; 10(1):7197. PubMed ID: 32345989 [TBL] [Abstract][Full Text] [Related]
6. Integrating unsupervised language model with triplet neural networks for protein gene ontology prediction. Zhu YH; Zhang C; Yu DJ; Zhang Y PLoS Comput Biol; 2022 Dec; 18(12):e1010793. PubMed ID: 36548439 [TBL] [Abstract][Full Text] [Related]
7. Accurate Prediction of Antifreeze Protein from Sequences through Natural Language Text Processing and Interpretable Machine Learning Approaches. Dhibar S; Jana B J Phys Chem Lett; 2023 Dec; 14(48):10727-10735. PubMed ID: 38009833 [TBL] [Abstract][Full Text] [Related]
8. AFP-SPTS: An Accurate Prediction of Antifreeze Proteins Using Sequential and Pseudo-Tri-Slicing Evolutionary Features with an Extremely Randomized Tree. Khan A; Uddin J; Ali F; Kumar H; Alghamdi W; Ahmad A J Chem Inf Model; 2023 Feb; 63(3):826-834. PubMed ID: 36649569 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Anti-Freezing Proteins From Their Evolutionary Profile. Kumar N; Choudhury S; Bajiya N; Patiyal S; Raghava GPS Proteomics; 2024 Sep; ():e202400157. PubMed ID: 39305039 [TBL] [Abstract][Full Text] [Related]
10. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties. Kandaswamy KK; Chou KC; Martinetz T; Möller S; Suganthan PN; Sridharan S; Pugalenthi G J Theor Biol; 2011 Feb; 270(1):56-62. PubMed ID: 21056045 [TBL] [Abstract][Full Text] [Related]
11. An Effective Antifreeze Protein Predictor with Ensemble Classifiers and Comprehensive Sequence Descriptors. Yang R; Zhang C; Gao R; Zhang L Int J Mol Sci; 2015 Sep; 16(9):21191-214. PubMed ID: 26370959 [TBL] [Abstract][Full Text] [Related]
12. afpCOOL: A tool for antifreeze protein prediction. Eslami M; Shirali Hossein Zade R; Takalloo Z; Mahdevar G; Emamjomeh A; Sajedi RH; Zahiri J Heliyon; 2018 Jul; 4(7):e00705. PubMed ID: 30094375 [TBL] [Abstract][Full Text] [Related]
13. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition. He X; Han K; Hu J; Yan H; Yang JY; Shen HB; Yu DJ J Membr Biol; 2015 Dec; 248(6):1005-14. PubMed ID: 26058944 [TBL] [Abstract][Full Text] [Related]
14. Improving protein-protein interaction prediction using protein language model and protein network features. Hu J; Li Z; Rao B; Thafar MA; Arif M Anal Biochem; 2024 Oct; 693():115550. PubMed ID: 38679191 [TBL] [Abstract][Full Text] [Related]
15. iAFP-Ense: An Ensemble Classifier for Identifying Antifreeze Protein by Incorporating Grey Model and PSSM into PseAAC. Xiao X; Hui M; Liu Z J Membr Biol; 2016 Dec; 249(6):845-854. PubMed ID: 27812737 [TBL] [Abstract][Full Text] [Related]
16. An analysis of protein language model embeddings for fold prediction. Villegas-Morcillo A; Gomez AM; Sanchez V Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443054 [TBL] [Abstract][Full Text] [Related]
17. Effects of antifreeze proteins on the vitrification of mouse oocytes: comparison of three different antifreeze proteins. Lee HH; Lee HJ; Kim HJ; Lee JH; Ko Y; Kim SM; Lee JR; Suh CS; Kim SH Hum Reprod; 2015 Sep; 30(9):2110-9. PubMed ID: 26202918 [TBL] [Abstract][Full Text] [Related]
18. xCAPT5: protein-protein interaction prediction using deep and wide multi-kernel pooling convolutional neural networks with protein language model. Dang TH; Vu TA BMC Bioinformatics; 2024 Mar; 25(1):106. PubMed ID: 38461247 [TBL] [Abstract][Full Text] [Related]
19. Prediction of antifreeze proteins using machine learning. Khan A; Uddin J; Ali F; Ahmad A; Alghushairy O; Banjar A; Daud A Sci Rep; 2022 Nov; 12(1):20672. PubMed ID: 36450775 [TBL] [Abstract][Full Text] [Related]
20. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences. Zhao X; Ma Z; Yin M Int J Mol Sci; 2012; 13(2):2196-2207. PubMed ID: 22408447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]