These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39317044)
1. A robust bio-based polyurethane employed as surgical suture with help to promote skin wound healing. Wang J; Liu Z; Qiu H; Wang C; Dong X; Du J; Li X; Yang X; Fang H; Ding Y Biomater Adv; 2025 Jan; 166():214048. PubMed ID: 39317044 [TBL] [Abstract][Full Text] [Related]
2. Tough, Recyclable, and Degradable Elastomers for Potential Biomedical Applications. Guo X; Liang J; Wang Z; Qin J; Zhang Q; Zhu S; Zhang K; Zhu H Adv Mater; 2023 May; 35(20):e2210092. PubMed ID: 36929503 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of biocompatibility and mechanical behavior of chitin-based polyurethane elastomers. Part-II: Effect of diisocyanate structure. Zia KM; Zuber M; Bhatti IA; Barikani M; Sheikh MA Int J Biol Macromol; 2009 Jan; 44(1):23-8. PubMed ID: 19041889 [TBL] [Abstract][Full Text] [Related]
4. Asymmetric Hard Domain-Induced Robust Resilient Biocompatible Self-Healable Waterborne Polyurethane for Biomedical Applications. Morang S; Bandyopadhyay A; Mandal BB; Karak N ACS Appl Bio Mater; 2023 Jul; 6(7):2771-2784. PubMed ID: 37414749 [TBL] [Abstract][Full Text] [Related]
5. Lignin-containing polyurethane elastomers with enhanced mechanical properties via hydrogen bond interactions. Sun N; Di M; Liu Y Int J Biol Macromol; 2021 Aug; 184():1-8. PubMed ID: 34118286 [TBL] [Abstract][Full Text] [Related]
6. Self-Healing Polyurethane Elastomers with Superior Tensile Strength and Elastic Recovery Based on Dynamic Oxime-Carbamate and Hydrogen Bond Interactions. Wang X; Wang L; Liu C; Cao Y; He P; Cui Y; Li H Macromol Rapid Commun; 2024 Jul; 45(13):e2400022. PubMed ID: 38704741 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of biocompatibility and mechanical behavior of polyurethane elastomers based on chitin/1,4-butane diol blends. Zia KM; Zuber M; Bhatti IA; Barikani M; Sheikh MA Int J Biol Macromol; 2009 Jan; 44(1):18-22. PubMed ID: 18930759 [TBL] [Abstract][Full Text] [Related]
8. Development of high strength siloxane poly(urethane-urea) elastomers based on linked macrodiols for heart valve application. Dandeniyage LS; Gunatillake PA; Adhikari R; Bown M; Shanks R; Adhikari B J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1712-1720. PubMed ID: 28858405 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828 [TBL] [Abstract][Full Text] [Related]
10. Mathematical modeling and experimental study of mechanical properties of chitosan based polyurethanes: Effect of diisocyanate nature by mixture design approach. Javaid MA; Younas M; Zafar I; Khera RA; Zia KM; Jabeen S Int J Biol Macromol; 2019 Mar; 124():321-330. PubMed ID: 30465837 [TBL] [Abstract][Full Text] [Related]
11. Preparation and Characterization of Isosorbide-Based Self-Healable Polyurethane Elastomers with Thermally Reversible Bonds. Kim HN; Lee DW; Ryu H; Song GS; Lee DS Molecules; 2019 Mar; 24(6):. PubMed ID: 30889870 [TBL] [Abstract][Full Text] [Related]
12. In vitro oxidative stability of high strength siloxane poly(urethane-urea) elastomers based on linked-macrodiol. Dandeniyage LS; Knower W; Adhikari R; Bown M; Shanks R; Adhikari B; Gunatillake PA J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2557-2565. PubMed ID: 30835945 [TBL] [Abstract][Full Text] [Related]
14. The Green Approach to the Synthesis of Bio-Based Thermoplastic Polyurethane Elastomers with Partially Bio-Based Hard Blocks. Głowińska E; Kasprzyk P; Datta J Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946420 [TBL] [Abstract][Full Text] [Related]
15. Extremely Strong and Tough Biodegradable Poly(urethane) Elastomers with Unprecedented Crack Tolerance via Hierarchical Hydrogen-Bonding Interactions. Guo R; Zhang Q; Wu Y; Chen H; Liu Y; Wang J; Duan X; Chen Q; Ge Z; Zhang Y Adv Mater; 2023 May; 35(21):e2212130. PubMed ID: 36822221 [TBL] [Abstract][Full Text] [Related]
16. Modulating alginate-polyurethane elastomer properties: Influence of NCO/OH ratio with aliphatic diisocyanate. Usman A; Hussain MT; Akram N; Zuber M; Sultana S; Aftab W; Zia KM; Maqbool M; Alanazi YM; Nazir A; Javaid MA Int J Biol Macromol; 2024 Oct; 278(Pt 2):134657. PubMed ID: 39147346 [TBL] [Abstract][Full Text] [Related]
17. Introduction of Reversible Urethane Bonds Based on Vanillyl Alcohol for Efficient Self-Healing of Polyurethane Elastomers. Lee DW; Kim HN; Lee DS Molecules; 2019 Jun; 24(12):. PubMed ID: 31212813 [TBL] [Abstract][Full Text] [Related]
18. Facile preparation of antibacterial, highly elastic silvered polyurethane nanofiber fabrics using silver carbamate and their dermal wound healing properties. Hong SM; Kim JW; Knowles JC; Gong MS J Biomater Appl; 2017 Feb; 31(7):1026-1038. PubMed ID: 28077051 [TBL] [Abstract][Full Text] [Related]
19. Development of segmented polyurethane elastomers with low iodine content exhibiting radiopacity and blood compatibility. Dawlee S; Jayabalan M Biomed Mater; 2011 Oct; 6(5):055002. PubMed ID: 21832810 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic supramolecular polyurethane with sliding polyrotaxane and disulfide bonds for strain sensors with wide sensing range and self-healing capability. Wu D; Liu L; Ma Q; Dong Q; Han Y; Liu L; Zhao S; Zhang R; Wang M J Colloid Interface Sci; 2023 Jan; 630(Pt A):909-920. PubMed ID: 36306602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]