These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 393171)

  • 1. Adherence of bacteria, yeast, blood cells, and latex spheres to large-porosity membrane filters.
    Zierdt CH
    Appl Environ Microbiol; 1979 Dec; 38(6):1166-72. PubMed ID: 393171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capture of latex beads, bacteria, endotoxin, and viruses by charge-modified filters.
    Hou K; Gerba CP; Goyal SM; Zerda KS
    Appl Environ Microbiol; 1980 Nov; 40(5):892-6. PubMed ID: 7004352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane filtration of pharmaceutical solutions.
    McKinnon BT; Avis KE
    Am J Hosp Pharm; 1993 Sep; 50(9):1921-36. PubMed ID: 8135243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of blood coagulation induced by latex particles and the roles of blood cells.
    Miyamoto M; Sasakawa S; Ozawa T; Kawaguchi H; Ohtsuka Y
    Biomaterials; 1990 Aug; 11(6):385-8. PubMed ID: 2207226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latex particle adherence (LPA) test for identification of adherent and non-adherent leucocytes.
    Bubeník J; Malkovský M
    Folia Biol (Praha); 1977; 23(5):359-69. PubMed ID: 923860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets.
    Goldsmith HL; Bell DN; Braovac S; Steinberg A; McIntosh F
    Biophys J; 1995 Oct; 69(4):1584-95. PubMed ID: 8534829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penetration and entrapment of large particles in erythrocytes by electrical breakdown techniques.
    Vienken J; Jeltsch E; Zimmermann U
    Cytobiologie; 1978 Jun; 17(1):182-96. PubMed ID: 689250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of five different filters for the removal of leukocytes from red cell concentrates.
    Pietersz RN; Steneker I; Reesink HW; Dekker WJ; Al EJ; Huisman JG; Biewenga J
    Vox Sang; 1992; 62(2):76-81. PubMed ID: 1519371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical collection efficiency of filter materials for bacteria and viruses.
    Burton NC; Grinshpun SA; Reponen T
    Ann Occup Hyg; 2007 Mar; 51(2):143-51. PubMed ID: 17041245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood cell structure-function studies: light transmission and attenuation coefficients of suspensions of blood cells and model particles at rest and with stirring.
    Frojmovic MM; Panjwani R
    J Lab Clin Med; 1975 Aug; 86(2):326-43. PubMed ID: 1151155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of retention efficiency of filters against nanoparticles in liquids using an aerosolization technique.
    Ling TY; Wang J; Pui DY
    Environ Sci Technol; 2010 Jan; 44(2):774-9. PubMed ID: 20000703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective isolation of bacteria for metagenomic analysis: Impact of membrane characteristics on bacterial filterability.
    Nnadozie CF; Lin J; Govinden R
    Biotechnol Prog; 2015; 31(4):853-66. PubMed ID: 26018114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric membrane filters for the removal of leukocytes from blood.
    Bruil A; van Aken WG; Beugeling T; Feijen J; Steneker I; Huisman JG; Prins HK
    J Biomed Mater Res; 1991 Dec; 25(12):1459-80. PubMed ID: 1794995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of white cell reduction by synthetic fiber cell filters.
    Callaerts AJ; Gielis ML; Sprengers ED; Muylle L
    Transfusion; 1993 Feb; 33(2):134-8. PubMed ID: 8430452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histologic and immunohistochemical studies on the preparation of white cell-poor red cell concentrates: the filtration process using three different polyester filters.
    Steneker I; Biewenga J
    Transfusion; 1991 Jan; 31(1):40-6. PubMed ID: 1986463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle sorting using a porous membrane in a microfluidic device.
    Wei H; Chueh BH; Wu H; Hall EW; Li CW; Schirhagl R; Lin JM; Zare RN
    Lab Chip; 2011 Jan; 11(2):238-45. PubMed ID: 21057685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cigarettes with defective filters marketed for 40 years: what Philip Morris never told smokers.
    Pauly JL; Mepani AB; Lesses JD; Cummings KM; Streck RJ
    Tob Control; 2002 Mar; 11 Suppl 1(Suppl 1):I51-61. PubMed ID: 11893815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leukodepletion blood filters: filter design and mechanisms of leukocyte removal.
    Dzik S
    Transfus Med Rev; 1993 Apr; 7(2):65-77. PubMed ID: 8481601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronmicroscopic examination of white cell reduction by four white cell-reduction filters.
    Steneker I; van Luyn MJ; van Wachem PB; Biewenga J
    Transfusion; 1992 Jun; 32(5):450-7. PubMed ID: 1626349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of metals to membrane filters in view of their speciation in nutrient solution.
    Weltje L; Hollander WD; Wolterbeek HT
    Environ Toxicol Chem; 2003 Feb; 22(2):265-71. PubMed ID: 12558156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.