These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Thermodynamic matchers: strengthening the significance of RNA folding energies. Höchsmann T; Höchsmann M; Giegerich R Comput Syst Bioinformatics Conf; 2006; ():111-21. PubMed ID: 17369630 [TBL] [Abstract][Full Text] [Related]
23. Crumple: a method for complete enumeration of all possible pseudoknot-free RNA secondary structures. Bleckley S; Stone JW; Schroeder SJ PLoS One; 2012; 7(12):e52414. PubMed ID: 23300665 [TBL] [Abstract][Full Text] [Related]
24. RNA independent fragment partition method based on deep learning for RNA secondary structure prediction. Zhao Q; Mao Q; Zhao Z; Yuan W; He Q; Sun Q; Yao Y; Fan X Sci Rep; 2023 Feb; 13(1):2861. PubMed ID: 36801945 [TBL] [Abstract][Full Text] [Related]
25. Cotranscriptional Kinetic Folding of RNA Secondary Structures Including Pseudoknots. Thanh VH; Korpela D; Orponen P J Comput Biol; 2021 Sep; 28(9):892-908. PubMed ID: 33902324 [No Abstract] [Full Text] [Related]
26. DEBFold: Computational Identification of RNA Secondary Structures for Sequences across Structural Families Using Deep Learning. Yang TH J Chem Inf Model; 2024 May; 64(9):3756-3766. PubMed ID: 38648189 [TBL] [Abstract][Full Text] [Related]
29. CyloFold: secondary structure prediction including pseudoknots. Bindewald E; Kluth T; Shapiro BA Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W368-72. PubMed ID: 20501603 [TBL] [Abstract][Full Text] [Related]
30. MetalionRNA: computational predictor of metal-binding sites in RNA structures. Philips A; Milanowska K; Lach G; Boniecki M; Rother K; Bujnicki JM Bioinformatics; 2012 Jan; 28(2):198-205. PubMed ID: 22110243 [TBL] [Abstract][Full Text] [Related]
31. GHOST-NOT and GHOST-YES: Two programs for generating high-speed biosensors with randomized oligonucleotide binding sites with NOT or YES Boolean logic functions based on experimentally validated algorithms. Kaloudas D; Pavlova N; Penchovsky R J Biotechnol; 2023 Aug; 373():82-89. PubMed ID: 37499876 [TBL] [Abstract][Full Text] [Related]
32. The Varkud Satellite Ribozyme: A Thirty-Year Journey through Biochemistry, Crystallography, and Computation. DasGupta S; Piccirilli JA Acc Chem Res; 2021 Jun; 54(11):2591-2602. PubMed ID: 33974386 [TBL] [Abstract][Full Text] [Related]
34. Thermodynamic heuristics with case-based reasoning: combined insights for RNA pseudoknot secondary structure. Al-Khatib RM; Rashid NA; Abdullah R J Biomol Struct Dyn; 2011 Aug; 29(1):1-26. PubMed ID: 21696223 [TBL] [Abstract][Full Text] [Related]
35. The structure and function of catalytic RNAs. Wu Q; Huang L; Zhang Y Sci China C Life Sci; 2009 Mar; 52(3):232-44. PubMed ID: 19294348 [TBL] [Abstract][Full Text] [Related]
36. In Silico Prediction of RNA Secondary Structure. Tahi F; Du T Tran V; Boucheham A Methods Mol Biol; 2017; 1543():145-168. PubMed ID: 28349425 [TBL] [Abstract][Full Text] [Related]
37. Identification of over 200-fold more hairpin ribozymes than previously known in diverse circular RNAs. Weinberg CE; Olzog VJ; Eckert I; Weinberg Z Nucleic Acids Res; 2021 Jun; 49(11):6375-6388. PubMed ID: 34096583 [TBL] [Abstract][Full Text] [Related]
38. The kinetics of ribozyme cleavage: a tool to analyze RNA folding as a function of catalysis. Zingler N Methods Mol Biol; 2014; 1086():209-24. PubMed ID: 24136606 [TBL] [Abstract][Full Text] [Related]
39. Fast formation of the P3-P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme. Zhang L; Xiao M; Lu C; Zhang Y RNA; 2005 Jan; 11(1):59-69. PubMed ID: 15574515 [TBL] [Abstract][Full Text] [Related]
40. Structure-based search and in vitro analysis of self-cleaving ribozymes. Jimenez RM; Lupták A Methods Mol Biol; 2012; 848():131-43. PubMed ID: 22315067 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]