These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 39318189)
21. The expression of YAP1 is increased in high-grade prostatic adenocarcinoma but is reduced in neuroendocrine prostate cancer. Cheng S; Prieto-Dominguez N; Yang S; Connelly ZM; StPierre S; Rushing B; Watkins A; Shi L; Lakey M; Baiamonte LB; Fazili T; Lurie A; Corey E; Shi R; Yeh Y; Yu X Prostate Cancer Prostatic Dis; 2020 Dec; 23(4):661-669. PubMed ID: 32313141 [TBL] [Abstract][Full Text] [Related]
22. Understanding the function of Pax5 in development of docetaxel-resistant neuroendocrine-like prostate cancers. Bhattacharya S; Harris HL; Islam R; Bodas S; Polavaram N; Mishra J; Das D; Seshacharyulu P; Kalluchi A; Pal A; Kohli M; Lele SM; Muders M; Batra SK; Ghosh PM; Datta K; Rowley MJ; Dutta S Cell Death Dis; 2024 Aug; 15(8):617. PubMed ID: 39183332 [TBL] [Abstract][Full Text] [Related]
23. Molecular model for neuroendocrine prostate cancer progression. Chen R; Dong X; Gleave M BJU Int; 2018 Oct; 122(4):560-570. PubMed ID: 29569310 [TBL] [Abstract][Full Text] [Related]
24. The central role of Sphingosine kinase 1 in the development of neuroendocrine prostate cancer (NEPC): A new targeted therapy of NEPC. Lee CF; Chen YA; Hernandez E; Pong RC; Ma S; Hofstad M; Kapur P; Zhau H; Chung LW; Lai CH; Lin H; Lee MS; Raj GV; Hsieh JT Clin Transl Med; 2022 Feb; 12(2):e695. PubMed ID: 35184376 [TBL] [Abstract][Full Text] [Related]
25. Reciprocal deregulation of NKX3.1 and AURKA axis in castration-resistant prostate cancer and NEPC models. Sooreshjani MA; Kamra M; Zoubeidi A; Shah K J Biomed Sci; 2021 Oct; 28(1):68. PubMed ID: 34625072 [TBL] [Abstract][Full Text] [Related]
26. Smoothened loss is a characteristic of neuroendocrine prostate cancer. Wang L; Li H; Li Z; Li M; Tang Q; Wu C; Lu Z Prostate; 2021 Jun; 81(9):508-520. PubMed ID: 33955576 [TBL] [Abstract][Full Text] [Related]
27. Spatial Gene Expression Analysis Reveals Characteristic Gene Expression Patterns of De Novo Neuroendocrine Prostate Cancer Coexisting with Androgen Receptor Pathway Prostate Cancer. Watanabe R; Miura N; Kurata M; Kitazawa R; Kikugawa T; Saika T Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240308 [TBL] [Abstract][Full Text] [Related]
28. The Crosstalk of Long Non-Coding RNA and MicroRNA in Castration-Resistant and Neuroendocrine Prostate Cancer: Their Interaction and Clinical Importance. Hu CY; Wu KY; Lin TY; Chen CC Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008817 [TBL] [Abstract][Full Text] [Related]
29. Targeting RET Kinase in Neuroendocrine Prostate Cancer. VanDeusen HR; Ramroop JR; Morel KL; Bae SY; Sheahan AV; Sychev Z; Lau NA; Cheng LC; Tan VM; Li Z; Petersen A; Lee JK; Park JW; Yang R; Hwang JH; Coleman I; Witte ON; Morrissey C; Corey E; Nelson PS; Ellis L; Drake JM Mol Cancer Res; 2020 Aug; 18(8):1176-1188. PubMed ID: 32461304 [TBL] [Abstract][Full Text] [Related]
30. Amplification of MUC1 in prostate cancer metastasis and CRPC development. Wong N; Major P; Kapoor A; Wei F; Yan J; Aziz T; Zheng M; Jayasekera D; Cutz JC; Chow MJ; Tang D Oncotarget; 2016 Dec; 7(50):83115-83133. PubMed ID: 27825118 [TBL] [Abstract][Full Text] [Related]
31. Selective Actionable and Druggable Protein Kinases Drive the Progression of Neuroendocrine Prostate Cancer. Lu C; Qie Y; Liu S; Wu C; Zhang Z; Liu R; Yang K; Hu H; Xu Y DNA Cell Biol; 2018 Sep; 37(9):758-766. PubMed ID: 29969286 [TBL] [Abstract][Full Text] [Related]
32. Reproducible preclinical models of androgen receptor driven human prostate cancer bone metastasis. Yin J; Daryanani A; Lu F; Ku AT; Bright JR; Alilin ANS; Bowman J; Lake R; Li C; Truong TM; Twohig JD; Mostaghel EA; Ishikawa M; Simpson M; Trostel SY; Corey E; Sowalsky AG; Kelly K Prostate; 2024 Aug; 84(11):1033-1046. PubMed ID: 38708958 [TBL] [Abstract][Full Text] [Related]
34. SRRM4 gene expression correlates with neuroendocrine prostate cancer. Li Y; Zhang Q; Lovnicki J; Chen R; Fazli L; Wang Y; Gleave M; Huang J; Dong X Prostate; 2019 Jan; 79(1):96-104. PubMed ID: 30155992 [TBL] [Abstract][Full Text] [Related]
35. Integrated analysis of single-cell and bulk transcriptomics develops a robust neuroendocrine cell-intrinsic signature to predict prostate cancer progression. Zhang T; Zhao F; Lin Y; Liu M; Zhou H; Cui F; Jin Y; Chen L; Sheng X Theranostics; 2024; 14(3):1065-1080. PubMed ID: 38250042 [TBL] [Abstract][Full Text] [Related]
36. Novel, non-invasive markers for detecting therapy induced neuroendocrine differentiation in castration-resistant prostate cancer patients. Bhagirath D; Liston M; Akoto T; Lui B; Bensing BA; Sharma A; Saini S Sci Rep; 2021 Apr; 11(1):8279. PubMed ID: 33859239 [TBL] [Abstract][Full Text] [Related]
37. Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. Liu Q; Pang J; Wang LA; Huang Z; Xu J; Yang X; Xie Q; Huang Y; Tang T; Tong D; Liu G; Wang L; Zhang D; Ma Q; Xiao H; Lan W; Qin J; Jiang J J Pathol; 2021 Jan; 253(1):106-118. PubMed ID: 33009820 [TBL] [Abstract][Full Text] [Related]
38. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Liu S; Alabi BR; Yin Q; Stoyanova T Semin Cancer Biol; 2022 Nov; 86(Pt 3):57-68. PubMed ID: 35597438 [TBL] [Abstract][Full Text] [Related]
39. ASCL1-mediated ferroptosis resistance enhances the progress of castration-resistant prostate cancer to neurosecretory prostate cancer. Nie J; Zhang P; Liang C; Yu Y; Wang X Free Radic Biol Med; 2023 Aug; 205():318-331. PubMed ID: 37355053 [TBL] [Abstract][Full Text] [Related]