These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39318269)

  • 1. Thermally activated intermittent flow in amorphous solids.
    Korchinski DJ; Rottler J
    Soft Matter; 2024 Oct; 20(39):7891-7913. PubMed ID: 39318269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic phase diagram of plastically deformed amorphous solids at finite temperature.
    Korchinski D; Rottler J
    Phys Rev E; 2022 Sep; 106(3-1):034103. PubMed ID: 36266895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally activated flow in models of amorphous solids.
    Popović M; de Geus TWJ; Ji W; Wyart M
    Phys Rev E; 2021 Aug; 104(2-2):025010. PubMed ID: 34525527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity and dynamical heterogeneity in driven glassy materials.
    Tsamados M
    Eur Phys J E Soft Matter; 2010 Jun; 32(2):165-81. PubMed ID: 20596880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of inertia in the rheology of amorphous systems: A finite-element-based elastoplastic model.
    Karimi K; Barrat JL
    Phys Rev E; 2016 Feb; 93(2):022904. PubMed ID: 26986396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Inertia on the Steady-Shear Rheology of Disordered Solids.
    Nicolas A; Barrat JL; Rottler J
    Phys Rev Lett; 2016 Feb; 116(5):058303. PubMed ID: 26894739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical physics of elastoplastic steady states in amorphous solids: finite temperatures and strain rates.
    Karmakar S; Lerner E; Procaccia I; Zylberg J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031301. PubMed ID: 21230063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling description of the yielding transition in soft amorphous solids at zero temperature.
    Lin J; Lerner E; Rosso A; Wyart M
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14382-7. PubMed ID: 25246567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear-transformation-zone theory of yielding in athermal amorphous materials.
    Langer JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012318. PubMed ID: 26274172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear yielding of amorphous glassy solids: effect of temperature and strain rate.
    Rottler J; Robbins MO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011507. PubMed ID: 12935150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Criticality in elastoplastic models of amorphous solids with stress-dependent yielding rates.
    Ferrero EE; Jagla EA
    Soft Matter; 2019 Nov; 15(44):9041-9055. PubMed ID: 31647078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal effects in the shear-transformation-zone theory of amorphous plasticity: comparisons to metallic glass data.
    Falk ML; Langer JS; Pechenik L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011507. PubMed ID: 15324056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driving Rate Dependence of Avalanche Statistics and Shapes at the Yielding Transition.
    Liu C; Ferrero EE; Puosi F; Barrat JL; Martens K
    Phys Rev Lett; 2016 Feb; 116(6):065501. PubMed ID: 26918998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved shear transformations in the transient plastic regime of sheared amorphous silicon.
    Albaret T; Boioli F; Rodney D
    Phys Rev E; 2020 Nov; 102(5-1):053003. PubMed ID: 33327176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signatures of the spatial extent of plastic events in the yielding transition in amorphous solids.
    Korchinski D; Ruscher C; Rottler J
    Phys Rev E; 2021 Sep; 104(3-1):034603. PubMed ID: 34654138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological evaluation of petroleum jelly as a base material in ointment and cream formulations: steady shear flow behavior.
    Park EK; Song KW
    Arch Pharm Res; 2010 Jan; 33(1):141-50. PubMed ID: 20191355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of collective elasticity on activated structural relaxation, yielding, and steady state flow in hard sphere fluids and colloidal suspensions under strong deformation.
    Ghosh A; Schweizer KS
    J Chem Phys; 2020 Nov; 153(19):194502. PubMed ID: 33218226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Criticality in sheared, disordered solids. I. Rate effects in stress and diffusion.
    Clemmer JT; Salerno KM; Robbins MO
    Phys Rev E; 2021 Apr; 103(4-1):042605. PubMed ID: 34005889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power fluctuations in sheared amorphous materials: A minimal model.
    Ekeh T; Fodor É; Fielding SM; Cates ME
    Phys Rev E; 2022 May; 105(5):L052601. PubMed ID: 35706183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robustness of avalanche dynamics in sheared amorphous solids as probed by transverse diffusion.
    Chattoraj J; Caroli C; Lemaître A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011501. PubMed ID: 21867172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.