These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 39318271)

  • 1. Versatility of threose nucleic acids: synthesis, properties, and applications in chemical biology and biomedical advancements.
    Tam DY; Li P; Liu LS; Wang F; Leung HM; Lo PK
    Chem Commun (Camb); 2024 Oct; 60(83):11864-11889. PubMed ID: 39318271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of a Fluorescent Cytidine TNA Triphosphate Analogue.
    Mei H; Chaput J
    Methods Mol Biol; 2019; 1973():27-37. PubMed ID: 31016694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of Functionally Enhanced α-l-Threofuranosyl Nucleic Acid Aptamers.
    McCloskey CM; Li Q; Yik EJ; Chim N; Ngor AK; Medina E; Grubisic I; Co Ting Keh L; Poplin R; Chaput JC
    ACS Synth Biol; 2021 Nov; 10(11):3190-3199. PubMed ID: 34739228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Threose nucleic acid as a primitive genetic polymer and a contemporary molecular tool.
    Wang J; Yu H
    Bioorg Chem; 2024 Feb; 143():107049. PubMed ID: 38150936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the Horizon of the Xeno Nucleic Acid Space: Threose Nucleic Acids with Increased Information Storage.
    Depmeier H; Kath-Schorr S
    J Am Chem Soc; 2024 Mar; 146(11):7743-7751. PubMed ID: 38442021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of a TNA-TNA complex in solution: NMR study of the octamer duplex derived from alpha-(L)-threofuranosyl-(3'-2')-CGAATTCG.
    Ebert MO; Mang C; Krishnamurthy R; Eschenmoser A; Jaun B
    J Am Chem Soc; 2008 Nov; 130(45):15105-15. PubMed ID: 18928287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase-mediated DNA synthesis on a TNA template.
    Chaput JC; Ichida JK; Szostak JW
    J Am Chem Soc; 2003 Jan; 125(4):856-7. PubMed ID: 12537469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and polymerase activity of a fluorescent cytidine TNA triphosphate analogue.
    Mei H; Shi C; Jimenez RM; Wang Y; Kardouh M; Chaput JC
    Nucleic Acids Res; 2017 Jun; 45(10):5629-5638. PubMed ID: 28472363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vitro Selection of an ATP-Binding TNA Aptamer.
    Zhang L; Chaput JC
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32933142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Scalable Synthesis of α-L-Threose Nucleic Acid Monomers.
    Sau SP; Fahmi NE; Liao JY; Bala S; Chaput JC
    J Org Chem; 2016 Mar; 81(6):2302-7. PubMed ID: 26895480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-stable threose nucleic acid-based biosensors for rapid and sensitive nucleic acid detection and in vivo imaging.
    Li P; Zhu C; Liu LS; Han CTJ; Chu HC; Li Z; Mao Z; Wang F; Lo PK
    Acta Biomater; 2024 Mar; 177():472-485. PubMed ID: 38296012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α-l-Threose Nucleic Acids as Biocompatible Antisense Oligonucleotides for Suppressing Gene Expression in Living Cells.
    Liu LS; Leung HM; Tam DY; Lo TW; Wong SW; Lo PK
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9736-9743. PubMed ID: 29473733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription.
    Dunn MR; Larsen AC; Zahurancik WJ; Fahmi NE; Meyers M; Suo Z; Chaput JC
    J Am Chem Soc; 2015 Apr; 137(12):4014-7. PubMed ID: 25785966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Insights into Conformation Differences between DNA/TNA and RNA/TNA Chimeric Duplexes.
    Anosova I; Kowal EA; Sisco NJ; Sau S; Liao JY; Bala S; Rozners E; Egli M; Chaput JC; Van Horn WD
    Chembiochem; 2016 Sep; 17(18):1705-8. PubMed ID: 27347671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Prebiotic Synthesis of α-Threofuranosyl Cytidine by Photochemical Anomerization.
    Colville BWF; Powner MW
    Angew Chem Int Ed Engl; 2021 May; 60(19):10526-10530. PubMed ID: 33644959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Nucleic Acid Sequence That is Catalytically Active in Both RNA and TNA Backbones.
    Wei D; Wang Y; Song D; Zhang Z; Wang J; Chen JY; Li Z; Yu H
    ACS Synth Biol; 2022 Nov; 11(11):3874-3885. PubMed ID: 36278399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of Innate Immune Responses by a CpG Oligonucleotide Sequence Composed Entirely of Threose Nucleic Acid.
    Lange MJ; Burke DH; Chaput JC
    Nucleic Acid Ther; 2019 Feb; 29(1):51-59. PubMed ID: 30526333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An In Vitro Selection Protocol for Threose Nucleic Acid (TNA) Using DNA Display.
    Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.8.1-19. PubMed ID: 24961723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.