These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 39319842)

  • 1. Glycerol 3-Phosphate Dehydrogenase Catalyzed Hydride Transfer: Enzyme Activation by Cofactor Pieces.
    Hegazy R; Cristobal JR; Richard JP
    Biochemistry; 2024 Nov; 63(21):2878-2891. PubMed ID: 39319842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A substrate in pieces: allosteric activation of glycerol 3-phosphate dehydrogenase (NAD+) by phosphite dianion.
    Tsang WY; Amyes TL; Richard JP
    Biochemistry; 2008 Apr; 47(16):4575-82. PubMed ID: 18376850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Glycerol 3-Phosphate Dehydrogenase: X-ray Crystal Structures That Guide the Interpretation of Mutagenesis Studies.
    Mydy LS; Cristobal JR; Katigbak RD; Bauer P; Reyes AC; Kamerlin SCL; Richard JP; Gulick AM
    Biochemistry; 2019 Feb; 58(8):1061-1073. PubMed ID: 30640445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycerol 3-Phosphate Dehydrogenase: Role of the Protein Conformational Change in Activation of a Readily Reversible Enzyme-Catalyzed Hydride Transfer Reaction.
    Cristobal JR; Hegazy R; Richard JP
    Biochemistry; 2024 Apr; 63(8):1016-1025. PubMed ID: 38546289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme Architecture: A Startling Role for Asn270 in Glycerol 3-Phosphate Dehydrogenase-Catalyzed Hydride Transfer.
    Reyes AC; Amyes TL; Richard JP
    Biochemistry; 2016 Mar; 55(10):1429-32. PubMed ID: 26926520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of Cofactor Binding Energy for Enzyme Catalysis: Formate Dehydrogenase-Catalyzed Reactions of the Whole NAD Cofactor and Cofactor Pieces.
    Cristobal JR; Nagorski RW; Richard JP
    Biochemistry; 2023 Aug; 62(15):2314-2324. PubMed ID: 37463347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme architecture: optimization of transition state stabilization from a cation-phosphodianion pair.
    Reyes AC; Koudelka AP; Amyes TL; Richard JP
    J Am Chem Soc; 2015 Apr; 137(16):5312-5. PubMed ID: 25884759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leishmania mexicana glycerol-3-phosphate dehydrogenase showed conformational changes upon binding a bi-substrate adduct.
    Choe J; Guerra D; Michels PA; Hol WG
    J Mol Biol; 2003 May; 329(2):335-49. PubMed ID: 12758080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydride Transfer Catalyzed by Glycerol Phosphate Dehydrogenase: Recruitment of an Acidic Amino Acid Side Chain to Rescue a Damaged Enzyme.
    He R; Cristobal JR; Gong NJ; Richard JP
    Biochemistry; 2020 Dec; 59(51):4856-4863. PubMed ID: 33305938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme Architecture: The Role of a Flexible Loop in Activation of Glycerol-3-phosphate Dehydrogenase for Catalysis of Hydride Transfer.
    He R; Reyes AC; Amyes TL; Richard JP
    Biochemistry; 2018 Jun; 57(23):3227-3236. PubMed ID: 29337541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reevaluation of the origin of the rate acceleration for enzyme-catalyzed hydride transfer.
    Reyes AC; Amyes TL; Richard JP
    Org Biomol Chem; 2017 Oct; 15(42):8856-8866. PubMed ID: 28956050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary Deuterium Kinetic Isotope Effects: A Probe for the Origin of the Rate Acceleration for Hydride Transfer Catalyzed by Glycerol-3-Phosphate Dehydrogenase.
    Reyes AC; Amyes TL; Richard JP
    Biochemistry; 2018 Jul; 57(29):4338-4348. PubMed ID: 29927590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity in transition state binding: the Pauling model revisited.
    Amyes TL; Richard JP
    Biochemistry; 2013 Mar; 52(12):2021-35. PubMed ID: 23327224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycerol-3-Phosphate Dehydrogenase: The K120 and K204 Side Chains Define an Oxyanion Hole at the Enzyme Active Site.
    Cristobal JR; Richard JP
    Biochemistry; 2022 May; 61(10):856-867. PubMed ID: 35502876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Organization of Active Site Side Chains of Glycerol-3-phosphate Dehydrogenase Promotes Efficient Enzyme Catalysis and Rescue of Variant Enzymes.
    Cristobal JR; Reyes AC; Richard JP
    Biochemistry; 2020 Apr; 59(16):1582-1591. PubMed ID: 32250105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphate binding energy and catalysis by small and large molecules.
    Morrow JR; Amyes TL; Richard JP
    Acc Chem Res; 2008 Apr; 41(4):539-48. PubMed ID: 18293941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of adipose tissue glycerol-3-phosphate dehydrogenase.
    Koekemoer TC; Litthauer D; Oelofsen W
    Int J Biochem Cell Biol; 1995 Jun; 27(6):625-32. PubMed ID: 7671141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear Free Energy Relationships for Enzymatic Reactions: Fresh Insight from a Venerable Probe.
    Richard JP; Cristobal JR; Amyes TL
    Acc Chem Res; 2021 May; 54(10):2532-2542. PubMed ID: 33939414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The unusual di-domain structure of Dunaliella salina glycerol-3-phosphate dehydrogenase enables direct conversion of dihydroxyacetone phosphate to glycerol.
    He Q; Toh JD; Ero R; Qiao Z; Kumar V; Serra A; Tan J; Sze SK; Gao YG
    Plant J; 2020 Apr; 102(1):153-164. PubMed ID: 31762135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme Architecture: Self-Assembly of Enzyme and Substrate Pieces of Glycerol-3-Phosphate Dehydrogenase into a Robust Catalyst of Hydride Transfer.
    Reyes AC; Amyes TL; Richard JP
    J Am Chem Soc; 2016 Nov; 138(46):15251-15259. PubMed ID: 27792325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.