These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39320125)
1. The energy metabolism of Jahn M; Crang N; Gynnå AH; Kabova D; Frielingsdorf S; Lenz O; Charpentier E; Hudson EP Appl Environ Microbiol; 2024 Oct; 90(10):e0074824. PubMed ID: 39320125 [TBL] [Abstract][Full Text] [Related]
2. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production. Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236 [TBL] [Abstract][Full Text] [Related]
3. Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering. Calvey CH; Sànchez I Nogué V; White AM; Kneucker CM; Woodworth SP; Alt HM; Eckert CA; Johnson CW Metab Eng; 2023 Jan; 75():78-90. PubMed ID: 36368470 [TBL] [Abstract][Full Text] [Related]
4. Protein allocation and utilization in the versatile chemolithoautotroph Jahn M; Crang N; Janasch M; Hober A; Forsström B; Kimler K; Mattausch A; Chen Q; Asplund-Samuelsson J; Hudson EP Elife; 2021 Nov; 10():. PubMed ID: 34723797 [TBL] [Abstract][Full Text] [Related]
5. An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture. Jugder BE; Chen Z; Ping DT; Lebhar H; Welch J; Marquis CP Microb Cell Fact; 2015 Mar; 14():42. PubMed ID: 25880663 [TBL] [Abstract][Full Text] [Related]
6. Growth of the facultative chemolithoautotroph Ralstonia eutropha on organic waste materials: growth characteristics, redox regulation and hydrogenase activity. Poladyan A; Blbulyan S; Sahakyan M; Lenz O; Trchounian A Microb Cell Fact; 2019 Nov; 18(1):201. PubMed ID: 31739794 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of Formate from CO Yu X; Niks D; Ge X; Liu H; Hille R; Mulchandani A Biochemistry; 2019 Apr; 58(14):1861-1868. PubMed ID: 30839197 [TBL] [Abstract][Full Text] [Related]
8. Engineering Cupriavidus necator H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO Kim S; Jang YJ; Gong G; Lee SM; Um Y; Kim KH; Ko JK Microb Cell Fact; 2022 Nov; 21(1):231. PubMed ID: 36335362 [TBL] [Abstract][Full Text] [Related]
9. Involvement of an unusual mol operon in molybdopterin cofactor biosynthesis in Ralstonia eutropha. Burgdorf T; Bömmer D; Bowien B J Mol Microbiol Biotechnol; 2001 Oct; 3(4):619-29. PubMed ID: 11545279 [TBL] [Abstract][Full Text] [Related]
10. Insights into the Degradation of Medium-Chain-Length Dicarboxylic Acids in Cupriavidus necator H16 Reveal β-Oxidation Differences between Dicarboxylic Acids and Fatty Acids. Strittmatter CS; Eggers J; Biesgen V; Hengsbach JN; Sakatoku A; Albrecht D; Riedel K; Steinbüchel A Appl Environ Microbiol; 2022 Jan; 88(2):e0187321. PubMed ID: 34731045 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions. Tang R; Weng C; Peng X; Han Y Metab Eng; 2020 Sep; 61():11-23. PubMed ID: 32348842 [TBL] [Abstract][Full Text] [Related]
13. The reliance of glycerol utilization by Cupriavidus necator on CO Strittmatter CS; Eggers J; Biesgen V; Pauels I; Becker F; Steinbüchel A Appl Microbiol Biotechnol; 2022 Apr; 106(7):2541-2555. PubMed ID: 35325274 [TBL] [Abstract][Full Text] [Related]
14. Detection of phase-dependent transcriptomic changes and Rubisco-mediated CO2 fixation into poly (3-hydroxybutyrate) under heterotrophic condition in Ralstonia eutropha H16 based on RNA-seq and gene deletion analyses. Shimizu R; Chou K; Orita I; Suzuki Y; Nakamura S; Fukui T BMC Microbiol; 2013 Jul; 13():169. PubMed ID: 23879744 [TBL] [Abstract][Full Text] [Related]
15. Genomic view of energy metabolism in Ralstonia eutropha H16. Cramm R J Mol Microbiol Biotechnol; 2009; 16(1-2):38-52. PubMed ID: 18957861 [TBL] [Abstract][Full Text] [Related]
16. CbbR and RegA regulate cbb operon transcription in Ralstonia eutropha H16. Gruber S; Schwab H; Heidinger P J Biotechnol; 2017 Sep; 257():78-86. PubMed ID: 28687513 [TBL] [Abstract][Full Text] [Related]
17. Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. Park JM; Kim TY; Lee SY BMC Syst Biol; 2011 Jun; 5():101. PubMed ID: 21711532 [TBL] [Abstract][Full Text] [Related]
18. Efficient reduction of CO Yu X; Niks D; Mulchandani A; Hille R J Biol Chem; 2017 Oct; 292(41):16872-16879. PubMed ID: 28784661 [TBL] [Abstract][Full Text] [Related]
19. The H2-sensing complex of Ralstonia eutropha: interaction between a regulatory [NiFe] hydrogenase and a histidine protein kinase. Buhrke T; Lenz O; Porthun A; Friedrich B Mol Microbiol; 2004 Mar; 51(6):1677-89. PubMed ID: 15009894 [TBL] [Abstract][Full Text] [Related]
20. Carbon dioxide valorization into resveratrol via lithoautotrophic fermentation using engineered Cupriavidus necator H16. Jang Y; Lee YJ; Gong G; Lee SM; Um Y; Kim KH; Ko JK Microb Cell Fact; 2024 Apr; 23(1):122. PubMed ID: 38678199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]