These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 39320984)
1. The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform. Ma W; Hu J; Chen Z; Ai Y; Zhang Y; Dong K; Meng X; Liu L J Chem Inf Model; 2024 Oct; 64(19):7273-7290. PubMed ID: 39320984 [TBL] [Abstract][Full Text] [Related]
2. Deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: Model Construction and Experiment Validation. Li X; Li Z; Wu X; Xiong Z; Yang T; Fu Z; Liu X; Tan X; Zhong F; Wan X; Wang D; Ding X; Yang R; Hou H; Li C; Liu H; Chen K; Jiang H; Zheng M J Med Chem; 2020 Aug; 63(16):8723-8737. PubMed ID: 31364850 [TBL] [Abstract][Full Text] [Related]
3. KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning. Li Z; Qu N; Zhou J; Sun J; Ren Q; Meng J; Wang G; Wang R; Liu J; Chen Y; Zhang S; Zheng M; Li X Nucleic Acids Res; 2024 Jul; 52(W1):W489-W497. PubMed ID: 38752486 [TBL] [Abstract][Full Text] [Related]
4. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome. Miljković F; Bajorath J J Comput Aided Mol Des; 2020 Jan; 34(1):1-10. PubMed ID: 31792884 [TBL] [Abstract][Full Text] [Related]
5. KinomeMETA: meta-learning enhanced kinome-wide polypharmacology profiling. Ren Q; Qu N; Sun J; Zhou J; Liu J; Ni L; Tong X; Zhang Z; Kong X; Wen Y; Wang Y; Wang D; Luo X; Zhang S; Zheng M; Li X Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38113075 [TBL] [Abstract][Full Text] [Related]
6. Kinome-Wide Profiling Prediction of Small Molecules. Sorgenfrei FA; Fulle S; Merget B ChemMedChem; 2018 Mar; 13(6):495-499. PubMed ID: 28544552 [TBL] [Abstract][Full Text] [Related]
7. Kinome-Wide Virtual Screening by Multi-Task Deep Learning. Hu J; Allen BK; Stathias V; Ayad NG; Schürer SC Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473785 [TBL] [Abstract][Full Text] [Related]
8. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome. Miljković F; Vogt M; Bajorath J J Comput Aided Mol Des; 2019 Jun; 33(6):559-572. PubMed ID: 30915709 [TBL] [Abstract][Full Text] [Related]
9. Chemogenomic Analysis of the Druggable Kinome and Its Application to Repositioning and Lead Identification Studies. Ravikumar B; Timonen S; Alam Z; Parri E; Wennerberg K; Aittokallio T Cell Chem Biol; 2019 Nov; 26(11):1608-1622.e6. PubMed ID: 31521622 [TBL] [Abstract][Full Text] [Related]
10. Extending kinome coverage by analysis of kinase inhibitor broad profiling data. Jacoby E; Tresadern G; Bembenek S; Wroblowski B; Buyck C; Neefs JM; Rassokhin D; Poncelet A; Hunt J; van Vlijmen H Drug Discov Today; 2015 Jun; 20(6):652-8. PubMed ID: 25596550 [TBL] [Abstract][Full Text] [Related]
11. Machine Learning Classification Models to Improve the Docking-based Screening: A Case of PI3K-Tankyrase Inhibitors. Berishvili VP; Voronkov AE; Radchenko EV; Palyulin VA Mol Inform; 2018 Nov; 37(11):e1800030. PubMed ID: 29901257 [TBL] [Abstract][Full Text] [Related]
12. A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery. Gao Y; Davies SP; Augustin M; Woodward A; Patel UA; Kovelman R; Harvey KJ Biochem J; 2013 Apr; 451(2):313-28. PubMed ID: 23398362 [TBL] [Abstract][Full Text] [Related]
13. KinomeX: a web application for predicting kinome-wide polypharmacology effect of small molecules. Li Z; Li X; Liu X; Fu Z; Xiong Z; Wu X; Tan X; Zhao J; Zhong F; Wan X; Luo X; Chen K; Jiang H; Zheng M Bioinformatics; 2019 Dec; 35(24):5354-5356. PubMed ID: 31228181 [TBL] [Abstract][Full Text] [Related]
14. Progress towards a public chemogenomic set for protein kinases and a call for contributions. Drewry DH; Wells CI; Andrews DM; Angell R; Al-Ali H; Axtman AD; Capuzzi SJ; Elkins JM; Ettmayer P; Frederiksen M; Gileadi O; Gray N; Hooper A; Knapp S; Laufer S; Luecking U; Michaelides M; Müller S; Muratov E; Denny RA; Saikatendu KS; Treiber DK; Zuercher WJ; Willson TM PLoS One; 2017; 12(8):e0181585. PubMed ID: 28767711 [TBL] [Abstract][Full Text] [Related]
15. Cross-reactivity virtual profiling of the human kinome by X-react(KIN): a chemical systems biology approach. Brylinski M; Skolnick J Mol Pharm; 2010 Dec; 7(6):2324-33. PubMed ID: 20958088 [TBL] [Abstract][Full Text] [Related]
16. KinScan: AI-based rapid profiling of activity across the kinome. Brahma R; Shin JM; Cho KH Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985454 [TBL] [Abstract][Full Text] [Related]
17. Crowdsourced mapping of unexplored target space of kinase inhibitors. Cichońska A; Ravikumar B; Allaway RJ; Wan F; Park S; Isayev O; Li S; Mason M; Lamb A; Tanoli Z; Jeon M; Kim S; Popova M; Capuzzi S; Zeng J; Dang K; Koytiger G; Kang J; Wells CI; Willson TM; ; Oprea TI; Schlessinger A; Drewry DH; Stolovitzky G; Wennerberg K; Guinney J; Aittokallio T Nat Commun; 2021 Jun; 12(1):3307. PubMed ID: 34083538 [TBL] [Abstract][Full Text] [Related]
18. Kinome-wide polypharmacology profiling of small molecules by multi-task graph isomorphism network approach. Bao L; Wang Z; Wu Z; Luo H; Yu J; Kang Y; Cao D; Hou T Acta Pharm Sin B; 2023 Jan; 13(1):54-67. PubMed ID: 36815050 [TBL] [Abstract][Full Text] [Related]
19. Application of Free-Wilson selectivity analysis for combinatorial library design. Sciabola S; Stanton RV; Johnson TL; Xi H Methods Mol Biol; 2011; 685():91-109. PubMed ID: 20981520 [TBL] [Abstract][Full Text] [Related]
20. Quantitative proteomics of kinase inhibitor targets and mechanisms. Daub H ACS Chem Biol; 2015 Jan; 10(1):201-12. PubMed ID: 25474541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]