These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 39321009)
21. Magnetoelectrics enables large power delivery to mm-sized wireless bioelectronics. Kim W; Tuppen CA; Alrashdan F; Singer A; Weirnick R; Robinson JT J Appl Phys; 2023 Sep; 134(9):094103. PubMed ID: 37692260 [TBL] [Abstract][Full Text] [Related]
22. A Robust Backscatter Modulation Scheme for Uninterrupted Ultrasonic Powering and Back-Communication of Deep Implants. Holzapfel L; Giagka V IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Sep; PP():. PubMed ID: 39302785 [TBL] [Abstract][Full Text] [Related]
23. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Piech DK; Johnson BC; Shen K; Ghanbari MM; Li KY; Neely RM; Kay JE; Carmena JM; Maharbiz MM; Muller R Nat Biomed Eng; 2020 Feb; 4(2):207-222. PubMed ID: 32076132 [TBL] [Abstract][Full Text] [Related]
24. Neural Dielet 2.0: A 128-Channel 2mm×2mm Battery-Free Neural Dielet Merging Simultaneous Multi-Channel Transmission through Multi-Carrier Orthogonal Backscatter. Yang C; Zhang Z; Zhang L; Zhang Y; Li Z; Luo Y; Pan G; Zhao B IEEE Trans Biomed Circuits Syst; 2024 Jun; PP():. PubMed ID: 38896527 [TBL] [Abstract][Full Text] [Related]
25. An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers. Rong Z; Zhang M; Ning Y; Pang W Sci Rep; 2022 Sep; 12(1):16174. PubMed ID: 36171230 [TBL] [Abstract][Full Text] [Related]
26. Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants. Choe JK; Kim S; Lee AY; Choi C; Cho JH; Jo W; Song MH; Cha C; Kim J Adv Mater; 2024 May; 36(18):e2311154. PubMed ID: 38174953 [TBL] [Abstract][Full Text] [Related]
27. Self-Image-Guided Ultrasonic Wireless Power Transmission to Millimeter-Sized Biomedical Implants. Meng M; Kiani M Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():364-367. PubMed ID: 31945916 [TBL] [Abstract][Full Text] [Related]
28. Magnetoelectric Transducer Designs for Use as Wireless Power Receivers in Wearable and Implantable Applications. Rupp T; Truong BD; Williams S; Roundy S Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30744044 [TBL] [Abstract][Full Text] [Related]
29. An Implantable Wireless System for Remote Hemodynamic Monitoring of Heart Failure Patients. Besirli M; Ture K; Beghetti M; Maloberti F; Dehollain C; Mattavelli M; Barrettino D IEEE Trans Biomed Circuits Syst; 2023 Aug; 17(4):688-700. PubMed ID: 37155376 [TBL] [Abstract][Full Text] [Related]
30. Design of a 900 MHz Dual-Mode SWIPT for Low-Power IoT Devices. Abbasizadeh H; Kim SY; Samadpoor Rikan B; Hejazi A; Khan D; Pu YG; Hwang KC; Yang Y; Kim DI; Lee KY Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661843 [TBL] [Abstract][Full Text] [Related]
31. A Single-Chip Full-Duplex High Speed Transceiver for Multi-Site Stimulating and Recording Neural Implants. Mirbozorgi SA; Bahrami H; Sawan M; Rusch LA; Gosselin B IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):643-53. PubMed ID: 26469635 [TBL] [Abstract][Full Text] [Related]
32. Very High Bit Rate Near-Field Communication with Low-Interference Coils and Digital Single-Bit Sampling Transceivers for Biomedical Sensor Systems. Stoecklin S; Rosch E; Yousaf A; Reindl L Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114024 [TBL] [Abstract][Full Text] [Related]
33. Power-efficient impedance-modulation wireless data links for biomedical implants. Mandal S; Sarpeshkar R IEEE Trans Biomed Circuits Syst; 2008 Dec; 2(4):301-15. PubMed ID: 23853133 [TBL] [Abstract][Full Text] [Related]
34. Simultaneous Wireless Power Transfer and Data Communication Using Synchronous Pulse-Controlled Load Modulation. Mao S; Wang H; Zhu C; Mao ZH; Sun M Measurement (Lond); 2017 Oct; 109():316-325. PubMed ID: 29203949 [TBL] [Abstract][Full Text] [Related]
35. Strategies and Techniques for Powering Wireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer. La Rosa R; Livreri P; Trigona C; Di Donato L; Sorbello G Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31212839 [TBL] [Abstract][Full Text] [Related]
36. An Implantable Optogenetic Neuro-Stimulator SoC With Extended Optical Pulse-Width Enabled by Supply-Variation-Immune Cycled Light-Toggling Stimulation. Yousefi T; Timonina K; Zoidl G; Kassiri H IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):557-569. PubMed ID: 35969561 [TBL] [Abstract][Full Text] [Related]
37. Ultrasonic Implant Localization for Wireless Power Transfer: Active Uplink and Harmonic Backscatter. Wang ML; Chang TC; Arbabian A IEEE Int Ultrason Symp; 2019 Oct; 2019():818-821. PubMed ID: 31988699 [TBL] [Abstract][Full Text] [Related]
38. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor. DeHennis A; Getzlaff S; Grice D; Mailand M IEEE J Biomed Health Inform; 2016 Jan; 20(1):18-28. PubMed ID: 26372659 [TBL] [Abstract][Full Text] [Related]
39. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End. Lee SB; Lee B; Kiani M; Mahmoudi B; Gross R; Ghovanloo M IEEE Sens J; 2016 Jan; 16(2):475-484. PubMed ID: 27069422 [TBL] [Abstract][Full Text] [Related]
40. An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling. Gong C; Liu D; Miao Z; Wang W; Li M Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28604610 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]