These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3932109)

  • 1. Development of a high-affinity GABA uptake system in embryonic amphibian spinal neurons.
    Lamborghini JE; Iles A
    Dev Biol; 1985 Nov; 112(1):167-76. PubMed ID: 3932109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and release of [3H]gamma-aminobutyric acid by embryonic spinal cord neurons in dissociated cell culture.
    Farb DH; Berg DK; Fischbach GD
    J Cell Biol; 1979 Mar; 80(3):651-61. PubMed ID: 457763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The appearance and development of neurotransmitter sensitivity in Xenopus embryonic spinal neurones in vitro.
    Bixby JL; Spitzer NC
    J Physiol; 1984 Aug; 353():143-55. PubMed ID: 6148408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early differentiation of vertebrate spinal neurons in the absence of voltage-dependent Ca2+ and Na+ influx.
    Bixby JL; Spitzer NC
    Dev Biol; 1984 Nov; 106(1):89-96. PubMed ID: 6092180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium dependence of differentiation of GABA immunoreactivity in spinal neurons.
    Spitzer NC; Debaca RC; Allen KA; Holliday J
    J Comp Neurol; 1993 Nov; 337(1):168-75. PubMed ID: 7506271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient expression of GABA immunoreactivity in the developing rat spinal cord.
    Ma W; Behar T; Barker JL
    J Comp Neurol; 1992 Nov; 325(2):271-90. PubMed ID: 1460116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inactivation of gamma-aminobutyric acid transaminase in dissociated neuronal cultures from spinal cord.
    Rando RR; Bangerter FW; Farb DH
    J Neurochem; 1981 Mar; 36(3):985-90. PubMed ID: 7205286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autoradiographic studies on the cellular localization of GABA and beta-alanine uptake by neurones and glia in tissue culture.
    Hösli L; Hösli E
    Adv Exp Med Biol; 1979; 123():205-18. PubMed ID: 517268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of GABA-immunoreactive neuron patterning in the spinal cord.
    Binor E; Heathcote RD
    J Comp Neurol; 2001 Sep; 438(1):1-11. PubMed ID: 11503149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord.
    Berki AC; O'Donovan MJ; Antal M
    J Comp Neurol; 1995 Nov; 362(4):583-96. PubMed ID: 8636469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The early development of neurons with GABA immunoreactivity in the CNS of Xenopus laevis embryos.
    Roberts A; Dale N; Ottersen OP; Storm-Mathisen J
    J Comp Neurol; 1987 Jul; 261(3):435-49. PubMed ID: 3611420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunohistochemical investigation of gamma-aminobutyric acid ontogeny and transient expression in the central nervous system of Xenopus laevis tadpoles.
    Barale E; Fasolo A; Girardi E; Artero C; Franzoni MF
    J Comp Neurol; 1996 Apr; 368(2):285-94. PubMed ID: 8725307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The appearance and development of chemosensitivity in Rohon-Beard neurones of the Xenopus spinal cord.
    Bixby JL; Spitzer NC
    J Physiol; 1982 Sep; 330():513-36. PubMed ID: 6294289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogeny of gamma-aminobutyric acid-immunoreactive neurons in the rhombencephalon and spinal cord of the sea lamprey.
    Meléndez-Ferro M; Pérez-Costas E; Villar-Cheda B; Rodríguez-Muñoz R; Anadón R; Rodicio MC
    J Comp Neurol; 2003 Sep; 464(1):17-35. PubMed ID: 12866126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-cell-autonomous mechanism of activity-dependent neurotransmitter switching.
    Guemez-Gamboa A; Xu L; Meng D; Spitzer NC
    Neuron; 2014 Jun; 82(5):1004-16. PubMed ID: 24908484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptogenesis and amino acid release from long term embryonic rat spinal cord neuronal culture using tissue culture inserts.
    Marsala M; Kakinohana O; Hefferan MP; Cizkova D; Kinjoh K; Marsala S
    J Neurosci Methods; 2005 Jan; 141(1):21-7. PubMed ID: 15585285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early expression of glycine and GABA(A) receptors in developing spinal cord neurons. Effects on neurite outgrowth.
    Tapia JC; Mentis GZ; Navarrete R; Nualart F; Figueroa E; Sánchez A; Aguayo LG
    Neuroscience; 2001; 108(3):493-506. PubMed ID: 11738262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental and neurochemical specificity of neuronal deficits produced by electrical impulse blockade in dissociated spinal cord cultures.
    Brenneman DE; Neale EA; Habig WH; Bowers LM; Nelson PG
    Brain Res; 1983 Jul; 285(1):13-27. PubMed ID: 6883125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The emergence, localization and maturation of neurotransmitter systems during development of the retina in Xenopus laevis. I. Gamma aminobutyric acid.
    Hollyfield JG; Rayborn ME; Sarthy PV; Lam DM
    J Comp Neurol; 1979 Dec; 188(4):587-98. PubMed ID: 521507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Levels of amino acid neurotransmitters during neurogenesis and in histotypic cultures of mouse spinal cord.
    Miranda-Contreras L; Benítez-Díaz P; Peña-Contreras Z; Mendoza-Briceño RV; Palacios-Prü E
    Dev Neurosci; 2002; 24(1):59-70. PubMed ID: 12145411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.