These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39321259)

  • 1. GNN4DM: a graph neural network-based method to identify overlapping functional disease modules.
    Gézsi A; Antal P
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39321259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules.
    Yao X; Yan J; Liu K; Kim S; Nho K; Risacher SL; Greene CS; Moore JH; Saykin AJ; Shen L;
    Bioinformatics; 2017 Oct; 33(20):3250-3257. PubMed ID: 28575147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases.
    Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P
    Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SigMod: an exact and efficient method to identify a strongly interconnected disease-associated module in a gene network.
    Liu Y; Brossard M; Roqueiro D; Margaritte-Jeannin P; Sarnowski C; Bouzigon E; Demenais F
    Bioinformatics; 2017 May; 33(10):1536-1544. PubMed ID: 28069594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. INfORM: Inference of NetwOrk Response Modules.
    Marwah VS; Kinaret PAS; Serra A; Scala G; Lauerma A; Fortino V; Greco D
    Bioinformatics; 2018 Jun; 34(12):2136-2138. PubMed ID: 29425308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SGCLDGA: unveiling drug-gene associations through simple graph contrastive learning.
    Fan Y; Zhang C; Hu X; Huang Z; Xue J; Deng L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic-overlapping co-expression module detection with application to Alzheimer's Disease.
    Manners HN; Roy S; Kalita JK
    Comput Biol Chem; 2018 Dec; 77():373-389. PubMed ID: 30466046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying new cancer genes based on the integration of annotated gene sets via hypergraph neural networks.
    Deng C; Li HD; Zhang LS; Liu Y; Li Y; Wang J
    Bioinformatics; 2024 Jun; 40(Suppl 1):i511-i520. PubMed ID: 38940121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enriching Human Interactome with Functional Mutations to Detect High-Impact Network Modules Underlying Complex Diseases.
    Cui H; Srinivasan S; Korkin D
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31731769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular pathway identification using biological network-regularized logistic models.
    Zhang W; Wan YW; Allen GI; Pang K; Anderson ML; Liu Z
    BMC Genomics; 2013; 14 Suppl 8(Suppl 8):S7. PubMed ID: 24564637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of single and module-based methods for modeling gene regulatory networks.
    Hernaez M; Blatti C; Gevaert O
    Bioinformatics; 2020 Jan; 36(2):558-567. PubMed ID: 31287491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GraphPro: An interpretable graph neural network-based model for identifying promoters in multiple species.
    Zhang Q; Wei Y; Liu L
    Comput Biol Med; 2024 Sep; 180():108974. PubMed ID: 39096613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global-local aware Heterogeneous Graph Contrastive Learning for multifaceted association prediction in miRNA-gene-disease networks.
    Si Y; Huang Z; Fang Z; Yuan Z; Huang Z; Li Y; Wei Y; Wu F; Yao YF
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39256197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prior knowledge-guided multilevel graph neural network for tumor risk prediction and interpretation via multi-omics data integration.
    Yan H; Weng D; Li D; Gu Y; Ma W; Liu Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38670157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HOGMMNC: a higher order graph matching with multiple network constraints model for gene-drug regulatory modules identification.
    Chen J; Peng H; Han G; Cai H; Cai J
    Bioinformatics; 2019 Feb; 35(4):602-610. PubMed ID: 30052773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XGDAG: explainable gene-disease associations via graph neural networks.
    Mastropietro A; De Carlo G; Anagnostopoulos A
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37531293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.