These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39321259)

  • 21. SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks.
    Loers JU; Vermeirssen V
    BMC Bioinformatics; 2022 Sep; 23(1):363. PubMed ID: 36064320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Searching the overlap between network modules with specific betweeness (S2B) and its application to cross-disease analysis.
    Garcia-Vaquero ML; Gama-Carvalho M; Rivas JL; Pinto FR
    Sci Rep; 2018 Aug; 8(1):11555. PubMed ID: 30068933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A network-based machine-learning framework to identify both functional modules and disease genes.
    Yang K; Lu K; Wu Y; Yu J; Liu B; Zhao Y; Chen J; Zhou X
    Hum Genet; 2021 Jun; 140(6):897-913. PubMed ID: 33409574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Explainable Multilayer Graph Neural Network for cancer gene prediction.
    Chatzianastasis M; Vazirgiannis M; Zhang Z
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37862225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembling spatial clustering framework for heterogeneous spatial transcriptomics data with GRAPHDeep.
    Liu T; Fang Z; Li X; Zhang L; Cao DS; Li M; Yin M
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38243703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. transferGWAS: GWAS of images using deep transfer learning.
    Kirchler M; Konigorski S; Norden M; Meltendorf C; Kloft M; Schurmann C; Lippert C
    Bioinformatics; 2022 Jul; 38(14):3621-3628. PubMed ID: 35640976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GMNN2CD: identification of circRNA-disease associations based on variational inference and graph Markov neural networks.
    Niu M; Zou Q; Wang C
    Bioinformatics; 2022 Apr; 38(8):2246-2253. PubMed ID: 35157027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning.
    Zhang Y; Wang Z; Wei H; Chen M
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):159. PubMed ID: 38844961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneous biomedical entity representation learning for gene-disease association prediction.
    Meng Z; Liu S; Liang S; Jani B; Meng Z
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39154194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DOMINO: a network-based active module identification algorithm with reduced rate of false calls.
    Levi H; Elkon R; Shamir R
    Mol Syst Biol; 2021 Jan; 17(1):e9593. PubMed ID: 33471440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A deep learning framework for predicting disease-gene associations with functional modules and graph augmentation.
    Jia X; Luo W; Li J; Xing J; Sun H; Wu S; Su X
    BMC Bioinformatics; 2024 Jun; 25(1):214. PubMed ID: 38877401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LocalAli: an evolutionary-based local alignment approach to identify functionally conserved modules in multiple networks.
    Hu J; Reinert K
    Bioinformatics; 2015 Feb; 31(3):363-72. PubMed ID: 25282642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A multi-objective genetic algorithm to find active modules in multiplex biological networks.
    Novoa-Del-Toro EM; Mezura-Montes E; Vignes M; Térézol M; Magdinier F; Tichit L; Baudot A
    PLoS Comput Biol; 2021 Aug; 17(8):e1009263. PubMed ID: 34460810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying multi-layer gene regulatory modules from multi-dimensional genomic data.
    Li W; Zhang S; Liu CC; Zhou XJ
    Bioinformatics; 2012 Oct; 28(19):2458-66. PubMed ID: 22863767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TSUNAMI: Translational Bioinformatics Tool Suite for Network Analysis and Mining.
    Huang Z; Han Z; Wang T; Shao W; Xiang S; Salama P; Rizkalla M; Huang K; Zhang J
    Genomics Proteomics Bioinformatics; 2021 Dec; 19(6):1023-1031. PubMed ID: 33705981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HGTDR: Advancing drug repurposing with heterogeneous graph transformers.
    Gharizadeh A; Abbasi K; Ghareyazi A; Mofrad MRK; Rabiee HR
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38913860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GNN-SubNet: disease subnetwork detection with explainable graph neural networks.
    Pfeifer B; Saranti A; Holzinger A
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii120-ii126. PubMed ID: 36124793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.