These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 39321296)

  • 1. Directional picoantenna behavior of tunnel junctions formed by an atomic-scale surface defect.
    Mateos D; Jover O; Varea M; Lauwaet K; Granados D; Miranda R; Fernandez-Dominguez AI; Martin-Jimenez A; Otero R
    Sci Adv; 2024 Sep; 10(39):eadn2295. PubMed ID: 39321296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inelastic Light Scattering in the Vicinity of a Single-Atom Quantum Point Contact in a Plasmonic Picocavity.
    Liu S; Bonafe FP; Appel H; Rubio A; Wolf M; Kumagai T
    ACS Nano; 2023 Jun; 17(11):10172-10180. PubMed ID: 37183801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule optomechanics in "picocavities".
    Benz F; Schmidt MK; Dreismann A; Chikkaraddy R; Zhang Y; Demetriadou A; Carnegie C; Ohadi H; de Nijs B; Esteban R; Aizpurua J; Baumberg JJ
    Science; 2016 Nov; 354(6313):726-729. PubMed ID: 27846600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a sharp metal tip to control the polarization and direction of emission from a quantum dot.
    Ghimire A; Shafran E; Gerton JM
    Sci Rep; 2014 Sep; 4():6456. PubMed ID: 25248420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances.
    Cotrufo M; Osorio CI; Koenderink AF
    ACS Nano; 2016 Mar; 10(3):3389-97. PubMed ID: 26854880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-Scale Structural Fluctuations of a Plasmonic Cavity.
    Rosławska A; Merino P; Grewal A; Leon CC; Kuhnke K; Kern K
    Nano Lett; 2021 Sep; 21(17):7221-7227. PubMed ID: 34428071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directing fluorescence with plasmonic and photonic structures.
    Dutta Choudhury S; Badugu R; Lakowicz JR
    Acc Chem Res; 2015 Aug; 48(8):2171-80. PubMed ID: 26168343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect.
    Urbieta M; Barbry M; Zhang Y; Koval P; Sánchez-Portal D; Zabala N; Aizpurua J
    ACS Nano; 2018 Jan; 12(1):585-595. PubMed ID: 29298379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized surface plasmon mode-enhanced spectrum-tunable radiation in electrically driven plasmonic antennas.
    Liu Y; Jiang Z; Qin J; Wang L
    Opt Lett; 2020 Oct; 45(19):5506-5509. PubMed ID: 33001938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical properties of plasmonic tunneling junctions.
    Tang Y; Harutyunyan H
    J Chem Phys; 2023 Feb; 158(6):060901. PubMed ID: 36792491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning Light Emission Crossovers in Atomic-Scale Aluminum Plasmonic Tunnel Junctions.
    Zhu Y; Cui L; Abbasi M; Natelson D
    Nano Lett; 2022 Oct; 22(20):8068-8075. PubMed ID: 36197739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically Driven Unidirectional Optical Nanoantennas.
    Gurunarayanan SP; Verellen N; Zharinov VS; James Shirley F; Moshchalkov VV; Heyns M; Van de Vondel J; Radu IP; Van Dorpe P
    Nano Lett; 2017 Dec; 17(12):7433-7439. PubMed ID: 29068692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable directional emission from electrically driven nano-strip metal-insulator-metal tunnel junctions.
    Kishen S; Tapar J; Emani NK
    Nanoscale Adv; 2022 Aug; 4(17):3609-3616. PubMed ID: 36134358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas.
    Mancini A; Gubbin CR; Berté R; Martini F; Politi A; Cortés E; Li Y; De Liberato S; Maier SA
    ACS Nano; 2020 Jul; 14(7):8508-8517. PubMed ID: 32530605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent Light Sources at the Nanoscale.
    Yang A; Wang D; Wang W; Odom TW
    Annu Rev Phys Chem; 2017 May; 68():83-99. PubMed ID: 28142312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasmall and tunable TeraHertz surface plasmon cavities at the ultimate plasmonic limit.
    Aupiais I; Grasset R; Guo T; Daineka D; Briatico J; Houver S; Perfetti L; Hugonin JP; Greffet JJ; Laplace Y
    Nat Commun; 2023 Nov; 14(1):7645. PubMed ID: 37996404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of Zenneck-like waves excited by optical nanoantennas in non-plasmonic transition metals.
    Yi J; de León-Pérez F; Cuche A; Devaux E; Genet C; Martín-Moreno L; Ebbesen TW
    Opt Express; 2022 Sep; 30(19):34984-34997. PubMed ID: 36242501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical nanoantenna with muitiple surface plasmon resonances for enhancements in near-field intensity and far-field radiation.
    Liu S; Ju P; Lv L; Tang P; Wang H; Zhong L; Lu X
    Opt Express; 2021 Oct; 29(22):35678-35690. PubMed ID: 34808997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of Nanoplasmonic Coupling to Molecular Orbital in Light Emission Induced by Tunneling Electrons.
    Yu A; Li S; Wang H; Chen S; Wu R; Ho W
    Nano Lett; 2018 May; 18(5):3076-3080. PubMed ID: 29660286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.