These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 39323686)
1. Artificial Intelligence (AI)-Enhanced Detection of Diabetic Retinopathy From Fundus Images: The Current Landscape and Future Directions. Alsadoun L; Ali H; Mushtaq MM; Mushtaq M; Burhanuddin M; Anwar R; Liaqat M; Bokhari SFH; Hasan AH; Ahmed F Cureus; 2024 Aug; 16(8):e67844. PubMed ID: 39323686 [TBL] [Abstract][Full Text] [Related]
2. Diabetic retinopathy screening through artificial intelligence algorithms: A systematic review. Farahat Z; Zrira N; Souissi N; Bennani Y; Bencherif S; Benamar S; Belmekki M; Ngote MN; Megdiche K Surv Ophthalmol; 2024; 69(5):707-721. PubMed ID: 38885761 [TBL] [Abstract][Full Text] [Related]
3. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239 [TBL] [Abstract][Full Text] [Related]
4. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera. Kubin AM; Huhtinen P; Ohtonen P; Keskitalo A; Wirkkala J; Hautala N Ann Med; 2024 Dec; 56(1):2352018. PubMed ID: 38738798 [TBL] [Abstract][Full Text] [Related]
5. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening. Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737 [TBL] [Abstract][Full Text] [Related]
6. Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment. Grzybowski A; Singhanetr P; Nanegrungsunk O; Ruamviboonsuk P Ophthalmol Ther; 2023 Jun; 12(3):1419-1437. PubMed ID: 36862308 [TBL] [Abstract][Full Text] [Related]
7. Application of Artificial Intelligence in Ophthalmology: An Updated Comprehensive Review. Hashemian H; Peto T; Ambrósio R; Lengyel I; Kafieh R; Muhammed Noori A; Khorrami-Nejad M J Ophthalmic Vis Res; 2024; 19(3):354-367. PubMed ID: 39359529 [TBL] [Abstract][Full Text] [Related]
8. The Role of Artificial Intelligence in the Diagnosis of Melanoma. Kalidindi S Cureus; 2024 Sep; 16(9):e69818. PubMed ID: 39308840 [TBL] [Abstract][Full Text] [Related]
9. Automated Identification of Different Severity Levels of Diabetic Retinopathy Using a Handheld Fundus Camera and Single-Image Protocol. Malerbi FK; Nakayama LF; Melo GB; Stuchi JA; Lencione D; Prado PV; Ribeiro LZ; Dib SA; Regatieri CV Ophthalmol Sci; 2024; 4(4):100481. PubMed ID: 38694494 [TBL] [Abstract][Full Text] [Related]
10. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Artificial Intelligence Algorithms for Diabetic Retinopathy Detection: Protocol for a Systematic Review and Meta-Analysis. Sesgundo Iii JA; Maeng DC; Tukay JA; Ascano MP; Suba-Cohen J; Sampang V JMIR Res Protoc; 2024 May; 13():e57292. PubMed ID: 38801771 [TBL] [Abstract][Full Text] [Related]
12. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy. Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113 [TBL] [Abstract][Full Text] [Related]
13. Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy. Pawar B; Lobo SN; Joseph M; Jegannathan S; Jayraj H Middle East Afr J Ophthalmol; 2021; 28(2):81-86. PubMed ID: 34759664 [TBL] [Abstract][Full Text] [Related]
14. Implementation of Artificial Intelligence-Based Diabetic Retinopathy Screening in a Tertiary Care Hospital in Quebec: Prospective Validation Study. Antaki F; Hammana I; Tessier MC; Boucher A; David Jetté ML; Beauchemin C; Hammamji K; Ong AY; Rhéaume MA; Gauthier D; Harissi-Dagher M; Keane PA; Pomp A JMIR Diabetes; 2024 Sep; 9():e59867. PubMed ID: 39226095 [TBL] [Abstract][Full Text] [Related]
15. Advancing Diabetic Retinopathy Diagnosis: Leveraging Optical Coherence Tomography Imaging with Convolutional Neural Networks. Ahmed HS; Thrishulamurthy CJ Rom J Ophthalmol; 2023; 67(4):398-402. PubMed ID: 38239418 [TBL] [Abstract][Full Text] [Related]
16. Unveiling the Potential: A Comprehensive Review of Artificial Intelligence Applications in Ophthalmology and Future Prospects. Swaminathan U; Daigavane S Cureus; 2024 Jun; 16(6):e61826. PubMed ID: 38975538 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study. Ming S; Xie K; Lei X; Yang Y; Zhao Z; Li S; Jin X; Lei B Int Ophthalmol; 2021 Apr; 41(4):1291-1299. PubMed ID: 33389425 [TBL] [Abstract][Full Text] [Related]
18. Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software. Wang XN; Dai L; Li ST; Kong HY; Sheng B; Wu Q Curr Eye Res; 2020 Dec; 45(12):1550-1555. PubMed ID: 32410471 [No Abstract] [Full Text] [Related]
19. Novel artificial intelligence algorithms for diabetic retinopathy and diabetic macular edema. Yao J; Lim J; Lim GYS; Ong JCL; Ke Y; Tan TF; Tan TE; Vujosevic S; Ting DSW Eye Vis (Lond); 2024 Jun; 11(1):23. PubMed ID: 38880890 [TBL] [Abstract][Full Text] [Related]