These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39324211)

  • 1. Enhancing oxygen reaction kinetics in lanthanum nickelate Ruddlesden-Popper electrodes
    Farias MB; Araújo AJM; Paskocimas CA; Fagg DP; Loureiro FJA
    Dalton Trans; 2024 Oct; 53(40):16610-16620. PubMed ID: 39324211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-Deficient Ruddlesden-Popper-Type Lanthanum Strontium Cuprate Doped with Bismuth as a Cathode for Solid Oxide Fuel Cells.
    Hu X; Li M; Xie Y; Yang Y; Wu X; Xia C
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21593-21602. PubMed ID: 31150195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revitalizing Oxygen Reduction Reactivity of Composite Oxide Electrodes via Electrochemically Deposited PrO
    Nam S; Kim J; Kim H; Ahn S; Jeon S; Choi Y; Park BK; Jung W
    Adv Mater; 2024 Jun; 36(25):e2307286. PubMed ID: 38516842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Ruddlesden-Popper La
    Zakharchuk K; Kovalevsky A; Yaremchenko A
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Oxygen Reduction Activity on Ruddlesden-Popper Phase Decorated La
    Hong T; Zhao M; Brinkman K; Chen F; Xia C
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8659-8668. PubMed ID: 28181431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior Performance as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells of the Ruddlesden-Popper
    Muñoz Gil D; Boulahya K; Santamaria Santoyo M; Azcondo MT; Amador U
    Inorg Chem; 2021 Mar; 60(5):3094-3105. PubMed ID: 33586955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect Structure, Oxygen Ion Conduction, and Conducting Mechanism in Ruddlesden-Popper Sr
    Hou K; Lou C; Tang M; Cao H; Liu L; Xu J
    Inorg Chem; 2024 Sep; 63(38):17727-17739. PubMed ID: 39262154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Oxygen Mobility in Ruddlesden-Popper Oxides.
    Lee D; Lee HN
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Temperature Protonic Conduction in La
    Chen L; Wang G; Toyoura K; Han D
    Small; 2024 Jul; 20(29):e2311473. PubMed ID: 38385829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical Investigation of the Electrochemical Oxidation of H
    Szaro NA; Ammal SC; Chen F; Heyden A
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30139-30151. PubMed ID: 37314993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of La
    Filonova E; Gilev A; Maksimchuk T; Pikalova N; Zakharchuk K; Pikalov S; Yaremchenko A; Pikalova E
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large oxygen nonstoichiometry in La(0.77)Sr(3.23)Co(2.75)C(0.25)O(8.40+δ) oxide (δ = 0, 1.3) related to n = 3 RP series.
    Demont A; Hébert S; Höwing J; Bréard Y; Pelloquin D
    Inorg Chem; 2013 Feb; 52(3):1265-74. PubMed ID: 23317105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Bifunctional Electrocatalytic Activities of Oxygen Electrodes via Incorporating Highly Conductive Sm
    Park JH; Jung CH; Kim KJ; Kim D; Shin HR; Hong JE; Lee KT
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2496-2506. PubMed ID: 33398987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?
    Tomkiewicz AC; Tamimi MA; Huq A; McIntosh S
    Faraday Discuss; 2015; 182():113-27. PubMed ID: 26206617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the Electrocatalytic Activity of the GdBa
    Li K; Świerczek K; Winiarz P; Brzoza-Kos A; Stępień A; Du Z; Zhang Y; Zheng K; Cichy K; Niemczyk A; Naumovich Y
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39578-39593. PubMed ID: 37558244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Mixed Ionic-Electronic Materials for Permselective Membranes and Solid Oxide Fuel Cells Based on Their Oxygen and Hydrogen Mobility.
    Sadykov V; Pikalova E; Sadovskaya E; Shlyakhtina A; Filonova E; Eremeev N
    Membranes (Basel); 2023 Jul; 13(8):. PubMed ID: 37623759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Oxygen Electrocatalysis by Nanostructured Mixed-Metal Oxides.
    Gu XK; Carneiro JSA; Samira S; Das A; Ariyasingha NM; Nikolla E
    J Am Chem Soc; 2018 Jul; 140(26):8128-8137. PubMed ID: 29847727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Materials A
    Tarasova N; Animitsa I
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst.
    Zhu Y; Lin Q; Hu Z; Chen Y; Yin Y; Tahini HA; Lin HJ; Chen CT; Zhang X; Shao Z; Wang H
    Small; 2020 May; 16(20):e2001204. PubMed ID: 32309914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Nanostructured Lanthanum Strontium Cobalt Ferrite/Gadolinian-Doped Ceria Composite Electrodes of Solid Oxide Cells Formed by In Situ Polarization.
    Sun Y; He S; Li Z; Mclaughlin AC; Chen K; Shao Z; Jiang SP
    ACS Appl Mater Interfaces; 2024 May; 16(17):21818-21827. PubMed ID: 38630942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.