BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 3932474)

  • 41. Vitamin K-dependent carboxylase. Stoichiometry of carboxylation and vitamin K 2,3-epoxide formation.
    Larson AE; Friedman PA; Suttie JW
    J Biol Chem; 1981 Nov; 256(21):11032-5. PubMed ID: 7287748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NAD(P)H dehydrogenase and its role in the vitamin K (2-methyl-3-phytyl-1,4-naphthaquinone)-dependent carboxylation reaction.
    Wallin R; Gebhardt O; Prydz H
    Biochem J; 1978 Jan; 169(1):95-101. PubMed ID: 629756
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition by warfarin of liver microsomal vitamin K-reductase in warfarin-resistant and susceptible rats.
    MacNicoll AD; Nadian AK; Townsend MG
    Biochem Pharmacol; 1984 Apr; 33(8):1331-6. PubMed ID: 6712738
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rat and human liver vitamin K epoxide reductase: inhibition by thiol blockers and vitamin K1.
    Wallin R; Patrick SD; Martin LF
    Int J Biochem; 1987; 19(11):1063-8. PubMed ID: 3428478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lapachol inhibition of DT-diaphorase (NAD(P)H:quinone dehydrogenase).
    Preusch PC
    Biochem Biophys Res Commun; 1986 Jun; 137(2):781-7. PubMed ID: 3089219
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of warfarin on plasma and liver vitamin K levels and vitamin K epoxide reductase activity in relation to plasma clotting factor levels in rats.
    Yamanaka Y; Yamano M; Yasunaga K; Shike T; Uchida K
    Thromb Res; 1990 Jan; 57(2):205-14. PubMed ID: 2315885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The function and metabolism of vitamin K.
    Olson RE
    Annu Rev Nutr; 1984; 4():281-337. PubMed ID: 6380538
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparison of warfarin resistance and liver microsomal vitamin K epoxide reductase activity in rats.
    MacNicoll AD
    Biochim Biophys Acta; 1985 May; 840(1):13-20. PubMed ID: 3995080
    [TBL] [Abstract][Full Text] [Related]  

  • 49. VKORC1L1, an enzyme rescuing the vitamin K 2,3-epoxide reductase activity in some extrahepatic tissues during anticoagulation therapy.
    Hammed A; Matagrin B; Spohn G; Prouillac C; Benoit E; Lattard V
    J Biol Chem; 2013 Oct; 288(40):28733-42. PubMed ID: 23928358
    [TBL] [Abstract][Full Text] [Related]  

  • 50. R- and S-Warfarin inhibition of vitamin K and vitamin K 2,3-epoxide reductase activities in the rat.
    Fasco MJ; Principe LM
    J Biol Chem; 1982 May; 257(9):4894-901. PubMed ID: 7068669
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure and function of vitamin K epoxide reductase.
    Tie JK; Stafford DW
    Vitam Horm; 2008; 78():103-30. PubMed ID: 18374192
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vitamin K1 reduction in human liver. Location of the coumarin-drug-insensitive enzyme.
    Wallin R; Patrick SD; Martin LF
    Biochem J; 1989 Jun; 260(3):879-84. PubMed ID: 2764909
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Co-purification of microsomal epoxide hydrolase with the warfarin-sensitive vitamin K1 oxide reductase of the vitamin K cycle.
    Guenthner TM; Cai D; Wallin R
    Biochem Pharmacol; 1998 Jan; 55(2):169-75. PubMed ID: 9448739
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sulfaquinoxaline inhibition of vitamin K epoxide and quinone reductase.
    Preusch PC; Hazelett SE; Lemasters KK
    Arch Biochem Biophys; 1989 Feb; 269(1):18-24. PubMed ID: 2916837
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolism of vitamin K and prothrombin synthesis: anticoagulants and the vitamin K--epoxide cycle.
    Bell RG
    Fed Proc; 1978 Oct; 37(12):2599-604. PubMed ID: 359368
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of N-methyl-thiotetrazole on vitamin K epoxide reductase.
    Creedon KA; Suttie JW
    Thromb Res; 1986 Oct; 44(2):147-53. PubMed ID: 3787564
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Warfarin alters vitamin K metabolism: a surprising mechanism of VKORC1 uncoupling necessitates an additional reductase.
    Rishavy MA; Hallgren KW; Wilson L; Singh S; Runge KW; Berkner KL
    Blood; 2018 Jun; 131(25):2826-2835. PubMed ID: 29592891
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.
    Wajih N; Sane DC; Hutson SM; Wallin R
    J Biol Chem; 2005 Mar; 280(11):10540-7. PubMed ID: 15640149
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism for potentiation of warfarin by phenylbutazone. Inhibition of vitamin K-dependent carboxylation and prothrombin synthesis by phenylbutazone in preparations from rat liver.
    Kelly LJ; Bell RG
    Biochem Pharmacol; 1981 Sep; 30(17):2443-9. PubMed ID: 21043243
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation.
    Vervoort LM; Ronden JE; Thijssen HH
    Biochem Pharmacol; 1997 Oct; 54(8):871-6. PubMed ID: 9354587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.