These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 39325266)

  • 1. Empowering Graph Neural Network-Based Computational Drug Repositioning with Large Language Model-Inferred Knowledge Representation.
    Gu Y; Xu Z; Yang C
    Interdiscip Sci; 2024 Sep; ():. PubMed ID: 39325266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FuseLinker: Leveraging LLM's pre-trained text embeddings and domain knowledge to enhance GNN-based link prediction on biomedical knowledge graphs.
    Xiao Y; Zhang S; Zhou H; Li M; Yang H; Zhang R
    J Biomed Inform; 2024 Oct; 158():104730. PubMed ID: 39326691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of SNOMED CT in Large Language Models: Scoping Review.
    Chang E; Sung S
    JMIR Med Inform; 2024 Oct; 12():e62924. PubMed ID: 39374057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RLFDDA: a meta-path based graph representation learning model for drug-disease association prediction.
    Zhang ML; Zhao BW; Su XR; He YZ; Yang Y; Hu L
    BMC Bioinformatics; 2022 Dec; 23(1):516. PubMed ID: 36456957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction.
    Gu Y; Zheng S; Yin Q; Jiang R; Li J
    Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging Large Language Models for Precision Monitoring of Chemotherapy-Induced Toxicities: A Pilot Study with Expert Comparisons and Future Directions.
    Ruiz Sarrias O; Martínez Del Prado MP; Sala Gonzalez MÁ; Azcuna Sagarduy J; Casado Cuesta P; Figaredo Berjano C; Galve-Calvo E; López de San Vicente Hernández B; López-Santillán M; Nuño Escolástico M; Sánchez Togneri L; Sande Sardina L; Pérez Hoyos MT; Abad Villar MT; Zabalza Zudaire M; Sayar Beristain O
    Cancers (Basel); 2024 Aug; 16(16):. PubMed ID: 39199603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating large language models for health-related text classification tasks with public social media data.
    Guo Y; Ovadje A; Al-Garadi MA; Sarker A
    J Am Med Inform Assoc; 2024 Oct; 31(10):2181-2189. PubMed ID: 39121174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similarity measures-based graph co-contrastive learning for drug-disease association prediction.
    Gao Z; Ma H; Zhang X; Wang Y; Wu Z
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37261859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empowering Graph Neural Networks with Block-Based Dual Adaptive Deep Adjustment for Drug Resistance-Related NcRNA Discovery.
    Zhang Y; Li X
    J Chem Inf Model; 2024 Apr; 64(8):3537-3547. PubMed ID: 38523272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.
    Zhao BW; Hu L; You ZH; Wang L; Su XR
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding.
    Qu X; Du G; Hu J; Cai Y
    Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning.
    Russe MF; Reisert M; Bamberg F; Rau A
    Rofo; 2024 Nov; 196(11):1166-1170. PubMed ID: 38408477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing biomedical information retrieval with a keyword frequency-driven prompt enhancement strategy.
    Aftab W; Apostolou Z; Bouazoune K; Straub T
    BMC Bioinformatics; 2024 Aug; 25(1):281. PubMed ID: 39192204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph embedding on biomedical networks: methods, applications and evaluations.
    Yue X; Wang Z; Huang J; Parthasarathy S; Moosavinasab S; Huang Y; Lin SM; Zhang W; Zhang P; Sun H
    Bioinformatics; 2020 Feb; 36(4):1241-1251. PubMed ID: 31584634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of Large Language Models in Health Care: Delphi Study.
    Denecke K; May R; ; Rivera Romero O
    J Med Internet Res; 2024 May; 26():e52399. PubMed ID: 38739445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LR-GNN: a graph neural network based on link representation for predicting molecular associations.
    Kang C; Zhang H; Liu Z; Huang S; Yin Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34889446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive evaluation of large Language models on benchmark biomedical text processing tasks.
    Jahan I; Laskar MTR; Peng C; Huang JX
    Comput Biol Med; 2024 Mar; 171():108189. PubMed ID: 38447502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triage Performance Across Large Language Models, ChatGPT, and Untrained Doctors in Emergency Medicine: Comparative Study.
    Masanneck L; Schmidt L; Seifert A; Kölsche T; Huntemann N; Jansen R; Mehsin M; Bernhard M; Meuth SG; Böhm L; Pawlitzki M
    J Med Internet Res; 2024 Jun; 26():e53297. PubMed ID: 38875696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing entity recognition in biomedicine via instruction tuning of large language models.
    Keloth VK; Hu Y; Xie Q; Peng X; Wang Y; Zheng A; Selek M; Raja K; Wei CH; Jin Q; Lu Z; Chen Q; Xu H
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38514400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the role of the UMLS in supporting diagnosis generation proposed by Large Language Models.
    Afshar M; Gao Y; Gupta D; Croxford E; Demner-Fushman D
    J Biomed Inform; 2024 Sep; 157():104707. PubMed ID: 39142598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.