BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 3932573)

  • 1. Limiting role of 6-phosphogluconolactonase in erythrocyte hexose monophosphate pathway metabolism.
    Beutler E; Kuhl W
    J Lab Clin Med; 1985 Nov; 106(5):573-7. PubMed ID: 3932573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics and significance of the reverse glucose-6-phosphate dehydrogenase reaction.
    Beutler E; Kuhl W
    J Lab Clin Med; 1986 Jun; 107(6):502-7. PubMed ID: 3711719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox metabolism of glutathione in the red blood cell.
    Kothe K; Sachsenröder C; Reich JG
    Acta Biol Med Ger; 1975; 34(2):203-28. PubMed ID: 239514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of the metabolic consequences of the combined deficiency of 6-phosphogluconolactonase and glucose-6-phosphate dehydrogenase in human erythrocytes.
    Thorburn DR; Kuchel PW
    J Lab Clin Med; 1987 Jul; 110(1):70-4. PubMed ID: 3598338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of haemolysis on the hexose monophosphate pathway in normal and in glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Galiano S; Mareni C; Gaetani GF
    Biochim Biophys Acta; 1978 Jan; 501(1):1-9. PubMed ID: 23153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defenses against oxidation in human erythrocytes: role of glutathione reductase in the activation of glucose decarboxylation by hemolytic drugs.
    Hohl RJ; Kennedy EJ; Frischer H
    J Lab Clin Med; 1991 Apr; 117(4):325-31. PubMed ID: 1901343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADP+ and NADPH in glucose-6-phosphate dehydrogenase-deficient erythrocytes under oxidative stimulation.
    Mareni C; Gaetani GF
    Biochim Biophys Acta; 1976 Jun; 430(3):395-8. PubMed ID: 7294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spectrophotometric assay for 6-phosphogluconolactonase involving the use of immobilized enzymes to prepare the labile 6-phosphoglucono-delta-lactone substrate.
    Moir RD; Stokes GB
    Biochem J; 1988 Nov; 256(1):69-73. PubMed ID: 3223913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyridine nucleotide analog interference with metabolic processes in mitogen-stimulated human T lymphocytes.
    Berger SJ; Manory I; Sudar DC; Krothapalli D; Berger NA
    Exp Cell Res; 1987 Dec; 173(2):379-87. PubMed ID: 2961586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship of the hexose monophosphate shunt to the endogenous metabolism of cell-free extracts of Mycobacterium phlei.
    SUTTON WB
    J Bacteriol; 1963 Feb; 85(2):476-84. PubMed ID: 13979428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Pentose monophoshate pathway and the glutathione system in physiological pregnancy].
    D'iakova NG; Chernyshov VG
    Vopr Med Khim; 1985; 31(2):33-6. PubMed ID: 4002657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism for regulating the distribution of glucose carbon between the Embden-Meyerhof and hexose-monophosphate pathways in Streptococcus faecalis.
    Brown AT; Wittenberger CL
    J Bacteriol; 1971 May; 106(2):456-67. PubMed ID: 4396792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of copper on the erythrocyte hexose monophosphate shunt pathway.
    Metz EN; Sagone AL
    J Lab Clin Med; 1972 Sep; 80(3):405-13. PubMed ID: 5055388
    [No Abstract]   [Full Text] [Related]  

  • 14. Visual test for erythrocytic glucose-6-phosphate dehydrogenase, 6-phosphogluconic dehydrogenase, and glutathione reductase deficiencies.
    Frischer H; Carson PE; Bowman JE; Rieckmann KH
    J Lab Clin Med; 1973 Apr; 81(4):613-24. PubMed ID: 4144490
    [No Abstract]   [Full Text] [Related]  

  • 15. [Interaction of the Embden-Meyerhof pathway and hexose monophosphate shunt in erythrocytes].
    Ataullakhanov FI; Buravtsev VN; Zhabotinskiĩ AM; Norina SB; Pichugin AV
    Biokhimiia; 1981 Apr; 46(4):723-31. PubMed ID: 7284486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the human-erythrocyte hexose-monophosphate shunt under conditions of oxidative stress. A study using NMR spectroscopy, a kinetic isotope effect, a reconstituted system and computer simulation.
    Thorburn DR; Kuchel PW
    Eur J Biochem; 1985 Jul; 150(2):371-86. PubMed ID: 4018089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase.
    Gaetani GD; Parker JC; Kirkman HN
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3584-7. PubMed ID: 4154443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation and rate of the hexose monophosphate shunt in Rana ridibunda erythrocytes.
    Kaloyianni M; Kalomenopoulou M
    Comp Biochem Physiol B; 1990; 95(2):287-94. PubMed ID: 2109668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between the rate of erythrocyte hexose monophosphate pathway and the glucose 6-phosphate concentration.
    Magnani M; Stocchi V; Fazi A; Dachà M; Fornaini G
    Biochem Biophys Res Commun; 1984 Nov; 125(1):14-7. PubMed ID: 6508792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Murine hexose-6-phosphate dehydrogenase: a bifunctional enzyme with broad substrate specificity and 6-phosphogluconolactonase activity.
    Clarke JL; Mason PJ
    Arch Biochem Biophys; 2003 Jul; 415(2):229-34. PubMed ID: 12831846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.