These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3932665)

  • 61. A mathematical method for determining genome divergence and species delineation using AFLP.
    Mougel C; Thioulouse J; Perrière G; Nesme X
    Int J Syst Evol Microbiol; 2002 Mar; 52(Pt 2):573-586. PubMed ID: 11931171
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies.
    Edwards SV; Beerli P
    Evolution; 2000 Dec; 54(6):1839-54. PubMed ID: 11209764
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Estimation of hominoid ancestral population sizes under bayesian coalescent models incorporating mutation rate variation and sequencing errors.
    Burgess R; Yang Z
    Mol Biol Evol; 2008 Sep; 25(9):1979-94. PubMed ID: 18603620
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Estimating substitution rates in ribosomal RNA genes.
    Rzhetsky A
    Genetics; 1995 Oct; 141(2):771-83. PubMed ID: 8647409
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Estimation of amino acid residue substitution rates at local spatial regions and application in protein function inference: a Bayesian Monte Carlo approach.
    Tseng YY; Liang J
    Mol Biol Evol; 2006 Feb; 23(2):421-36. PubMed ID: 16251508
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Assessing constancy of substitution rates in viruses over evolutionary time.
    Melcher U
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S3. PubMed ID: 20946614
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Distinguishing Among Evolutionary Forces Acting on Genome-Wide Base Composition: Computer Simulation Analysis of Approximate Methods for Inferring Site Frequency Spectra of Derived Mutations.
    Matsumoto T; Akashi H
    G3 (Bethesda); 2018 May; 8(5):1755-1769. PubMed ID: 29588382
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages.
    Liu HJ; Lee LH; Hsu HW; Kuo LC; Liao MH
    Virology; 2003 Sep; 314(1):336-49. PubMed ID: 14517086
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Estimating the number of ancestral lineages using a maximum-likelihood method based on rejection sampling.
    Blum MG; Rosenberg NA
    Genetics; 2007 Jul; 176(3):1741-57. PubMed ID: 17435232
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mammalian gene evolution: nucleotide sequence divergence between mouse and rat.
    Wolfe KH; Sharp PM
    J Mol Evol; 1993 Oct; 37(4):441-56. PubMed ID: 8308912
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A simulation study on Nei and Li's model for estimating DNA divergence from restriction enzyme maps.
    Li WH
    J Mol Evol; 1981; 17(4):251-5. PubMed ID: 6267313
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ancestral population sizes and species divergence times in the primate lineage on the basis of intron and BAC end sequences.
    Satta Y; Hickerson M; Watanabe H; O'hUigin C; Klein J
    J Mol Evol; 2004 Oct; 59(4):478-87. PubMed ID: 15638459
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The sequence of the gorilla fetal globin genes: evidence for multiple gene conversions in human evolution.
    Scott AF; Heath P; Trusko S; Boyer SH; Prass W; Goodman M; Czelusniak J; Chang LY; Slightom JL
    Mol Biol Evol; 1984 Sep; 1(5):371-89. PubMed ID: 6599972
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Evaluation of Ancestral Sequence Reconstruction Methods to Infer Nonstationary Patterns of Nucleotide Substitution.
    Matsumoto T; Akashi H; Yang Z
    Genetics; 2015 Jul; 200(3):873-90. PubMed ID: 25948563
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Estimating the variability of substitution rates.
    Bulmer M
    Genetics; 1989 Nov; 123(3):615-9. PubMed ID: 2599371
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Convergence rate estimation for the TKF91 model of biological sequence length evolution.
    Mitrophanov AY; Borodovsky M
    Math Biosci; 2007 Oct; 209(2):470-85. PubMed ID: 17448505
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A codon-based model of nucleotide substitution for protein-coding DNA sequences.
    Goldman N; Yang Z
    Mol Biol Evol; 1994 Sep; 11(5):725-36. PubMed ID: 7968486
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Relaxed clocks and inferences of heterogeneous patterns of nucleotide substitution and divergence time estimates across whales and dolphins (Mammalia: Cetacea).
    Dornburg A; Brandley MC; McGowen MR; Near TJ
    Mol Biol Evol; 2012 Feb; 29(2):721-36. PubMed ID: 21926070
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evolution of DNA base composition under no-strand-bias conditions when the substitution rates are not constant.
    Lobry JR; Lobry C
    Mol Biol Evol; 1999 Jun; 16(6):719-23. PubMed ID: 10368950
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Molecular evolution of the hepatitis B virus genome.
    Yang Z; Lauder IJ; Lin HJ
    J Mol Evol; 1995 Nov; 41(5):587-96. PubMed ID: 7490773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.