These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 39327067)
1. Applying machine learning approaches for predicting obesity risk using US health administrative claims database. Choong C; Brnabic A; Chinthammit C; Ravuri M; Terrell K; Kan H BMJ Open Diabetes Res Care; 2024 Sep; 12(5):. PubMed ID: 39327067 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes. Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560 [TBL] [Abstract][Full Text] [Related]
3. Assessment of obesity prevalence and validity of obesity diagnoses coded in claims data for selected surgical populations: A retrospective, observational study. Ammann EM; Kalsekar I; Yoo A; Scamuffa R; Hsiao CW; Stokes AC; Morton JM; Johnston SS Medicine (Baltimore); 2019 Jul; 98(29):e16438. PubMed ID: 31335698 [TBL] [Abstract][Full Text] [Related]
4. Validation of body mass index (BMI)-related ICD-9-CM and ICD-10-CM administrative diagnosis codes recorded in US claims data. Ammann EM; Kalsekar I; Yoo A; Johnston SS Pharmacoepidemiol Drug Saf; 2018 Oct; 27(10):1092-1100. PubMed ID: 30003617 [TBL] [Abstract][Full Text] [Related]
5. Improved Prediction of Body Mass Index in Real-World Administrative Healthcare Claims Databases. Lan G; Wu B; Sharma K; Gadhia K; Ashton V Adv Ther; 2022 Aug; 39(8):3835-3844. PubMed ID: 35680715 [TBL] [Abstract][Full Text] [Related]
6. Body Mass Index Variable Interpolation to Expand the Utility of Real-world Administrative Healthcare Claims Database Analyses. Wu B; Chow W; Sakthivel M; Kakade O; Gupta K; Israel D; Chen YW; Kuruvilla AS Adv Ther; 2021 Feb; 38(2):1314-1327. PubMed ID: 33432543 [TBL] [Abstract][Full Text] [Related]
7. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
8. Electronic phenotyping of health outcomes of interest using a linked claims-electronic health record database: Findings from a machine learning pilot project. Gibson TB; Nguyen MD; Burrell T; Yoon F; Wong J; Dharmarajan S; Ouellet-Hellstrom R; Hua W; Ma Y; Baro E; Bloemers S; Pack C; Kennedy A; Toh S; Ball R J Am Med Inform Assoc; 2021 Jul; 28(7):1507-1517. PubMed ID: 33712852 [TBL] [Abstract][Full Text] [Related]
9. Development and Validation of a Predictive Model to Identify Individuals Likely to Have Undiagnosed Chronic Obstructive Pulmonary Disease Using an Administrative Claims Database. Moretz C; Zhou Y; Dhamane AD; Burslem K; Saverno K; Jain G; Devercelli G; Kaila S; Ellis JJ; Hernandez G; Renda A J Manag Care Spec Pharm; 2015 Dec; 21(12):1149-59. PubMed ID: 26679964 [TBL] [Abstract][Full Text] [Related]
10. Association between cardiometabolic risk factors and body mass index based on diagnosis and treatment codes in an electronic medical record database. Brixner D; Ghate SR; McAdam-Marx C; Ben-Joseph R; Said Q J Manag Care Pharm; 2008 Oct; 14(8):756-67. PubMed ID: 18983205 [TBL] [Abstract][Full Text] [Related]
11. Validation of obesity coding among newly treated nonvalvular atrial fibrillation patients using an integrated electronic medical record and claims database. Jain R; Watzker A; Luo X; Kang AL; Baker CL; Rosenblatt L; Mardekian J; Menzin J Curr Med Res Opin; 2020 Feb; 36(2):189-197. PubMed ID: 31564172 [No Abstract] [Full Text] [Related]
12. Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment. Herrin J; Abraham NS; Yao X; Noseworthy PA; Inselman J; Shah ND; Ngufor C JAMA Netw Open; 2021 May; 4(5):e2110703. PubMed ID: 34019087 [TBL] [Abstract][Full Text] [Related]
13. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
14. Application of machine learning approaches to administrative claims data to predict clinical outcomes in medical and surgical patient populations. MacKay EJ; Stubna MD; Chivers C; Draugelis ME; Hanson WJ; Desai ND; Groeneveld PW PLoS One; 2021; 16(6):e0252585. PubMed ID: 34081720 [TBL] [Abstract][Full Text] [Related]
16. Predicting childhood obesity using electronic health records and publicly available data. Hammond R; Athanasiadou R; Curado S; Aphinyanaphongs Y; Abrams C; Messito MJ; Gross R; Katzow M; Jay M; Razavian N; Elbel B PLoS One; 2019; 14(4):e0215571. PubMed ID: 31009509 [TBL] [Abstract][Full Text] [Related]
17. A machine learning-based algorithm to identify U-500R insulin candidates among adults with type 2 diabetes mellitus in US retrospective databases. Patel RH; Fan L; Kelly NR; Gelsey F; Hertzberg JK; Brnabic AJM Curr Med Res Opin; 2024 Mar; 40(3):367-375. PubMed ID: 38259227 [TBL] [Abstract][Full Text] [Related]
18. Clinical Timing-Sequence Warning Models for Serious Bacterial Infections in Adults Based on Machine Learning: Retrospective Study. Liu J; Chen J; Dong Y; Lou Y; Tian Y; Sun H; Jin Y; Li J; Qiu Y J Med Internet Res; 2023 Dec; 25():e45515. PubMed ID: 38109177 [TBL] [Abstract][Full Text] [Related]
19. Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study. Corey KM; Kashyap S; Lorenzi E; Lagoo-Deenadayalan SA; Heller K; Whalen K; Balu S; Heflin MT; McDonald SR; Swaminathan M; Sendak M PLoS Med; 2018 Nov; 15(11):e1002701. PubMed ID: 30481172 [TBL] [Abstract][Full Text] [Related]
20. Chart validation of inpatient ICD-9-CM administrative diagnosis codes for acute myocardial infarction (AMI) among intravenous immune globulin (IGIV) users in the Sentinel Distributed Database. Ammann EM; Schweizer ML; Robinson JG; Eschol JO; Kafa R; Girotra S; Winiecki SK; Fuller CC; Carnahan RM; Leonard CE; Haskins C; Garcia C; Chrischilles EA Pharmacoepidemiol Drug Saf; 2018 Apr; 27(4):398-404. PubMed ID: 29446185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]