These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39328088)

  • 1. Transparent MXene Microelectrode Arrays for Multimodal Mapping of Neural Dynamics.
    Shankar S; Chen Y; Averbeck S; Hendricks Q; Murphy B; Ferleger B; Driscoll N; Shekhirev M; Takano H; Richardson A; Gogotsi Y; Vitale F
    Adv Healthc Mater; 2024 Sep; ():e2402576. PubMed ID: 39328088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain.
    Qiang Y; Artoni P; Seo KJ; Culaclii S; Hogan V; Zhao X; Zhong Y; Han X; Wang PM; Lo YK; Li Y; Patel HA; Huang Y; Sambangi A; Chu JSV; Liu W; Fagiolini M; Fang H
    Sci Adv; 2018 Sep; 4(9):eaat0626. PubMed ID: 30191176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent, Flexible, Penetrating Microelectrode Arrays with Capabilities of Single-Unit Electrophysiology.
    Seo KJ; Artoni P; Qiang Y; Zhong Y; Han X; Shi Z; Yao W; Fagiolini M; Fang H
    Adv Biosyst; 2019 Mar; 3(3):e1800276. PubMed ID: 32627399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Ti3C2 MXene Microelectrode Arrays for In Vivo Neural Recording.
    Driscoll N; Maleski K; Richardson AG; Murphy B; Anasori B; Lucas TH; Gogotsi Y; Vitale F
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
    Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X
    Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer Skulls With Integrated Transparent Electrode Arrays for Cortex-Wide Opto-Electrophysiological Recordings.
    Donaldson PD; Navabi ZS; Carter RE; Fausner SML; Ghanbari L; Ebner TJ; Swisher SL; Kodandaramaiah SB
    Adv Healthc Mater; 2022 Sep; 11(18):e2200626. PubMed ID: 35869830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings.
    Ramezani M; Kim JH; Liu X; Ren C; Alothman A; De-Eknamkul C; Wilson MN; Cubukcu E; Gilja V; Komiyama T; Kuzum D
    Nat Nanotechnol; 2024 Apr; 19(4):504-513. PubMed ID: 38212523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal Characterization of Neural Networks Using Highly Transparent Electrode Arrays.
    Donahue MJ; Kaszas A; Turi GF; Rózsa B; Slézia A; Vanzetta I; Katona G; Bernard C; Malliaras GG; Williamson A
    eNeuro; 2018; 5(6):. PubMed ID: 30783610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex.
    Abbott JR; Jeakle EN; Haghighi P; Usoro JO; Sturgill BS; Wu Y; Geramifard N; Radhakrishna R; Patnaik S; Nakajima S; Hess J; Mehmood Y; Devata V; Vijayakumar G; Sood A; Doan Thai TT; Dogra K; Hernandez-Reynoso AG; Pancrazio JJ; Cogan SF
    Biomaterials; 2024 Jul; 308():122543. PubMed ID: 38547834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Durability of Transparent Graphene Electrodes Fabricated on Different Flexible Substrates for Chronic In Vivo Experiments.
    Ding D; Lu Y; Zhao R; Liu X; De-Eknamkul C; Ren C; Mehrsa A; Komiyama T; Kuzum D
    IEEE Trans Biomed Eng; 2020 Nov; 67(11):3203-3210. PubMed ID: 32191878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparent and Stretchable Au─Ag Nanowire Recording Microelectrode Arrays.
    Chen Z; Nguyen K; Kowalik G; Shi X; Tian J; Doshi M; Alber BR; Guan X; Liu X; Ning X; Kay MW; Lu L
    Adv Mater Technol; 2023 May; 8(10):. PubMed ID: 38644939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex.
    Black BJ; Kanneganti A; Joshi-Imre A; Rihani R; Chakraborty B; Abbott J; Pancrazio JJ; Cogan SF
    J Neurophysiol; 2018 Oct; 120(4):2083-2090. PubMed ID: 30020844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and in vivo 2-photon microscopy validation of transparent PEDOT:PSS microelectrode arrays.
    Dijk G; Kaszas A; Pas J; O'Connor RP
    Microsyst Nanoeng; 2022; 8():90. PubMed ID: 36051746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microelectrode Arrays for Simultaneous Electrophysiology and Advanced Optical Microscopy.
    Middya S; Curto VF; Fernández-Villegas A; Robbins M; Gurke J; Moonen EJM; Kaminski Schierle GS; Malliaras GG
    Adv Sci (Weinh); 2021 Jul; 8(13):2004434. PubMed ID: 36246164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale.
    Driscoll N; Rosch RE; Murphy BB; Ashourvan A; Vishnubhotla R; Dickens OO; Johnson ATC; Davis KA; Litt B; Bassett DS; Takano H; Vitale F
    Commun Biol; 2021 Jan; 4(1):136. PubMed ID: 33514839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.