These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 39329997)

  • 1. The Role of Artificial Intelligence on Tumor Boards: Perspectives from Surgeons, Medical Oncologists and Radiation Oncologists.
    Nardone V; Marmorino F; Germani MM; Cichowska-Cwalińska N; Menditti VS; Gallo P; Studiale V; Taravella A; Landi M; Reginelli A; Cappabianca S; Girnyi S; Cwalinski T; Boccardi V; Goyal A; Skokowski J; Oviedo RJ; Abou-Mrad A; Marano L
    Curr Oncol; 2024 Aug; 31(9):4984-5007. PubMed ID: 39329997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and perspectives in use of artificial intelligence to support treatment recommendations in clinical oncology.
    Duwe G; Mercier D; Wiesmann C; Kauth V; Moench K; Junker M; Neumann CCM; Haferkamp A; Dengel A; Höfner T
    Cancer Med; 2024 Jun; 13(12):e7398. PubMed ID: 38923826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practice and Impact of Multidisciplinary Tumor Boards on Patient Management: A Prospective Study.
    Charara RN; Kreidieh FY; Farhat RA; Al-Feghali KA; Khoury KE; Haydar A; Nassar L; Berjawi G; Shamseddine A; El Saghir NS
    J Glob Oncol; 2017 Jun; 3(3):242-249. PubMed ID: 28717766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking the Power of ChatGPT, Artificial Intelligence, and Large Language Models: Practical Suggestions for Radiation Oncologists.
    Waters MR; Aneja S; Hong JC
    Pract Radiat Oncol; 2023; 13(6):e484-e490. PubMed ID: 37598727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptions of Canadian radiation oncologists, radiation physicists, radiation therapists and radiation trainees about the impact of artificial intelligence in radiation oncology - national survey.
    Wong K; Gallant F; Szumacher E
    J Med Imaging Radiat Sci; 2021 Mar; 52(1):44-48. PubMed ID: 33323332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictors of Treatment Decisions in Multidisciplinary Oncology Meetings: A Quantitative Observational Study.
    Soukup T; Lamb BW; Sarkar S; Arora S; Shah S; Darzi A; Green JS; Sevdalis N
    Ann Surg Oncol; 2016 Dec; 23(13):4410-4417. PubMed ID: 27380047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applying Artificial Intelligence to Address the Knowledge Gaps in Cancer Care.
    Simon G; DiNardo CD; Takahashi K; Cascone T; Powers C; Stevens R; Allen J; Antonoff MB; Gomez D; Keane P; Suarez Saiz F; Nguyen Q; Roarty E; Pierce S; Zhang J; Hardeman Barnhill E; Lakhani K; Shaw K; Smith B; Swisher S; High R; Futreal PA; Heymach J; Chin L
    Oncologist; 2019 Jun; 24(6):772-782. PubMed ID: 30446581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of breast cancer care between radiation oncologists and surgeons: a survey study.
    Jagsi R; Abrahamse P; Morrow M; Hamilton AS; Graff JJ; Katz SJ
    Int J Radiat Oncol Biol Phys; 2012 Apr; 82(5):2072-8. PubMed ID: 21477932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology.
    Shao J; Ma J; Zhang Q; Li W; Wang C
    Semin Cancer Biol; 2023 Jun; 91():1-15. PubMed ID: 36801447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. National Cancer Institute Workshop on Artificial Intelligence in Radiation Oncology: Training the Next Generation.
    Kang J; Thompson RF; Aneja S; Lehman C; Trister A; Zou J; Obcemea C; El Naqa I
    Pract Radiat Oncol; 2021; 11(1):74-83. PubMed ID: 32544635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives of Oncologists on the Ethical Implications of Using Artificial Intelligence for Cancer Care.
    Hantel A; Walsh TP; Marron JM; Kehl KL; Sharp R; Van Allen E; Abel GA
    JAMA Netw Open; 2024 Mar; 7(3):e244077. PubMed ID: 38546644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revolutionizing radiation therapy: the role of AI in clinical practice.
    Kawamura M; Kamomae T; Yanagawa M; Kamagata K; Fujita S; Ueda D; Matsui Y; Fushimi Y; Fujioka T; Nozaki T; Yamada A; Hirata K; Ito R; Fujima N; Tatsugami F; Nakaura T; Tsuboyama T; Naganawa S
    J Radiat Res; 2024 Jan; 65(1):1-9. PubMed ID: 37996085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence in oncology: current applications and future perspectives.
    Luchini C; Pea A; Scarpa A
    Br J Cancer; 2022 Jan; 126(1):4-9. PubMed ID: 34837074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are medical oncologists ready for the artificial intelligence revolution? Evaluation of the opinions, knowledge, and experiences of medical oncologists about artificial intelligence technologies.
    Sahin E
    Med Oncol; 2023 Oct; 40(11):327. PubMed ID: 37812310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitigating Burnout in an Oncological Unit: A Scoping Review.
    Alabi RO; Hietanen P; Elmusrati M; Youssef O; Almangush A; Mäkitie AA
    Front Public Health; 2021; 9():677915. PubMed ID: 34660505
    [No Abstract]   [Full Text] [Related]  

  • 16. Software-Tool Support for Collaborative, Virtual, Multi-Site Molecular Tumor Boards.
    Schapranow MP; Borchert F; Bougatf N; Hund H; Eils R
    SN Comput Sci; 2023; 4(4):358. PubMed ID: 37131499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergizing Expertise and Technology: The Artificial intelligence Revolution in Radiotherapy for Personalized and Precise Cancer Treatment.
    Kouhen F; Gouach HE; Saidi K; Dahbi Z; Errafiy N; Elmarrachi H; Ismaili N
    Gulf J Oncolog; 2024 Jan; 1(44):94-102. PubMed ID: 38205577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Learning Program for Treatment Recommendations by Molecular Tumor Boards and Artificial Intelligence.
    Sunami K; Naito Y; Saigusa Y; Amano T; Ennishi D; Imai M; Kage H; Kanai M; Kenmotsu H; Komine K; Koyama T; Maeda T; Morita S; Sakai D; Hirata M; Ito M; Kozuki T; Sakashita H; Horinouchi H; Okuma Y; Takashima A; Kubo T; Hironaka S; Segawa Y; Yakushijin Y; Bando H; Makiyama A; Suzuki T; Kinoshita I; Kohsaka S; Ohe Y; Ishioka C; Yamamoto K; Tsuchihara K; Yoshino T
    JAMA Oncol; 2024 Jan; 10(1):95-102. PubMed ID: 38032680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Artificial Intelligence (Watson for Oncology) for Treatment Recommendations Amongst Chinese Patients with Lung Cancer: Feasibility Study.
    Liu C; Liu X; Wu F; Xie M; Feng Y; Hu C
    J Med Internet Res; 2018 Sep; 20(9):e11087. PubMed ID: 30257820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying Artificial Intelligence to Gynecologic Oncology: A Review.
    Mysona DP; Kapp DS; Rohatgi A; Lee D; Mann AK; Tran P; Tran L; She JX; Chan JK
    Obstet Gynecol Surv; 2021 May; 76(5):292-301. PubMed ID: 34032861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.