These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39330627)
1. Impact of the Interruption Duration on Photoluminescence Properties of MOCVD-Grown GaAsP/InAlGaAs Quantum Well Structures. Wang B; Zeng Y; Yu X; Gao W; Chen W; Shen H; Qin L; Ning Y; Wang L Nanomaterials (Basel); 2024 Sep; 14(18):. PubMed ID: 39330627 [TBL] [Abstract][Full Text] [Related]
2. Photoluminescence Study of the Interface Fluctuation Effect for InGaAs/InAlAs/InP Single Quantum Well with Different Thickness. Wang Y; Sheng X; Guo Q; Li X; Wang S; Fu G; Mazur YI; Maidaniuk Y; Ware ME; Salamo GJ; Liang B; Huffaker DL Nanoscale Res Lett; 2017 Dec; 12(1):229. PubMed ID: 28359139 [TBL] [Abstract][Full Text] [Related]
3. Influence of substrate misorientation on the photoluminescence and structural properties of InGaAs/GaAsP multiple quantum wells. Dong H; Sun J; Ma S; Liang J; Lu T; Liu X; Xu B Nanoscale; 2016 Mar; 8(11):6043-56. PubMed ID: 26926840 [TBL] [Abstract][Full Text] [Related]
4. Effect of potential barrier height on the carrier transport in InGaAs/GaAsP multi-quantum wells and photoelectric properties of laser diode. Dong H; Sun J; Ma S; Liang J; Lu T; Jia Z; Liu X; Xu B Phys Chem Chem Phys; 2016 Mar; 18(9):6901-12. PubMed ID: 26879291 [TBL] [Abstract][Full Text] [Related]
5. Effect of a GaAsP shell on the optical properties of self-catalyzed GaAs nanowires grown on silicon. Couto OD; Sercombe D; Puebla J; Otubo L; Luxmoore IJ; Sich M; Elliott TJ; Chekhovich EA; Wilson LR; Skolnick MS; Liu HY; Tartakovskii AI Nano Lett; 2012 Oct; 12(10):5269-74. PubMed ID: 22989367 [TBL] [Abstract][Full Text] [Related]
6. Improving the internal quantum efficiency of QD/QW hybrid structures by increasing the GaN barrier thickness. Jia Z; Hao X; Lu T; Dong H; Jia Z; Ma S; Liang J; Jia W; Xu B RSC Adv; 2020 Nov; 10(68):41443-41452. PubMed ID: 35516542 [TBL] [Abstract][Full Text] [Related]
7. 980 nm electrically pumped continuous lasing of QW lasers grown on silicon. Lin Q; Huang J; Lin L; Luo W; Gu W; Lau KM Opt Express; 2023 May; 31(10):15326-15333. PubMed ID: 37157636 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Light Emission due to Formation of Semi-polar InGaN/GaN Multi-quantum Wells. Zhao WR; Weng GE; Wang JY; Zhang JY; Liang HW; Sekiguchi T; Zhang BP Nanoscale Res Lett; 2015 Dec; 10(1):459. PubMed ID: 26625883 [TBL] [Abstract][Full Text] [Related]
9. Carrier transfer efficiency and its influence on emission properties of telecom wavelength InP-based quantum dot - quantum well structures. Rudno-Rudziński W; Syperek M; Andrzejewski J; Rogowicz E; Eisenstein G; Bauer S; Sichkovskyi VI; Reithmaier JP; Sęk G Sci Rep; 2018 Aug; 8(1):12317. PubMed ID: 30120329 [TBL] [Abstract][Full Text] [Related]
10. The Influence Mechanism of Quantum Well Growth and Annealing Temperature on In Migration and Stress Modulation Behavior. Yan L; Liang F; Yang J; Chen P; Jiang D; Zhao D Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668197 [TBL] [Abstract][Full Text] [Related]
11. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. Parveen S; Paul KK; Das R; Giri PK J Colloid Interface Sci; 2019 Mar; 539():619-633. PubMed ID: 30612025 [TBL] [Abstract][Full Text] [Related]
12. Yellow-red light-emitting diodes using periodic Ga-flow interruption during deposition of InGaN well. Lee K; Lee H; Lee CR; Chung TH; Kim YS; Leem JY; Jeong KU; Kim JS Opt Express; 2017 Jun; 25(13):15152-15160. PubMed ID: 28788945 [TBL] [Abstract][Full Text] [Related]
14. Carrier Redistribution Between Two Kinds of Localized States in the InGaN/GaN Quantum Wells Studied by Photoluminescence. Xing Y; Zhao D; Jiang D; Liu Z; Zhu J; Chen P; Yang J; Liang F; Liu S; Zhang L Nanoscale Res Lett; 2019 Mar; 14(1):88. PubMed ID: 30874975 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of photoluminescence from GaInNAsSb quantum wells upon annealing: improvement of material quality and carrier collection by the quantum well. Baranowski M; Kudrawiec R; Latkowska M; Syperek M; Misiewicz J; Sarmiento T; Harris JS J Phys Condens Matter; 2013 Feb; 25(6):065801. PubMed ID: 23306016 [TBL] [Abstract][Full Text] [Related]
16. Luminescence studies on green emitting InGaN/GaN MQWs implanted with nitrogen. Sousa MA; Esteves TC; Sedrine NB; Rodrigues J; Lourenço MB; Redondo-Cubero A; Alves E; O'Donnell KP; Bockowski M; Wetzel C; Correia MR; Lorenz K; Monteiro T Sci Rep; 2015 Apr; 5():9703. PubMed ID: 25853988 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of photoluminescence of GaAsBi quantum wells by parabolic design of AlGaAs barriers. Pūkienė S; Karaliūnas M; Jasinskas A; Dudutienė E; Čechavičius B; Devenson J; Butkutė R; Udal A; Valušis G Nanotechnology; 2019 Nov; 30(45):455001. PubMed ID: 31362278 [TBL] [Abstract][Full Text] [Related]
18. Study of direct bandgap type-I GeSn/GeSn double quantum well with improved carrier confinement. Grant PC; Margetis J; Du W; Zhou Y; Dou W; Abernathy G; Kuchuk A; Li B; Tolle J; Liu J; Sun G; Soref RA; Mortazavi M; Yu SQ Nanotechnology; 2018 Nov; 29(46):465201. PubMed ID: 30191884 [TBL] [Abstract][Full Text] [Related]
19. Temperature-Dependent Photoluminescence of CdS/ZnS Core/Shell Quantum Dots for Temperature Sensors. Tang L; Zhang Y; Liao C; Guo Y; Lu Y; Xia Y; Liu Y Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433589 [TBL] [Abstract][Full Text] [Related]
20. InGaN/Dilute-As GaNAs Interface Quantum Well for Red Emitters. Tan CK; Borovac D; Sun W; Tansu N Sci Rep; 2016 Jan; 6():19271. PubMed ID: 26758552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]