These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 39330757)
21. Deep Learning-Based Fully Automated Segmentation of Regional Muscle Volume and Spatial Intermuscular Fat Using CT. Zhang R; He A; Xia W; Su Y; Jian J; Liu Y; Guo Z; Shi W; Zhang Z; He B; Cheng X; Gao X; Liu Y; Wang L Acad Radiol; 2023 Oct; 30(10):2280-2289. PubMed ID: 37429780 [TBL] [Abstract][Full Text] [Related]
22. Tissue segmentation of computed tomography images using a Random Forest algorithm: a feasibility study. Polan DF; Brady SL; Kaufman RA Phys Med Biol; 2016 Sep; 61(17):6553-69. PubMed ID: 27530679 [TBL] [Abstract][Full Text] [Related]
23. Abdomen CT multi-organ segmentation using token-based MLP-Mixer. Pan S; Chang CW; Wang T; Wynne J; Hu M; Lei Y; Liu T; Patel P; Roper J; Yang X Med Phys; 2023 May; 50(5):3027-3038. PubMed ID: 36463516 [TBL] [Abstract][Full Text] [Related]
24. A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment. Shen H; He P; Ren Y; Huang Z; Li S; Wang G; Cong M; Luo D; Shao D; Lee EY; Cui R; Huo L; Qin J; Liu J; Hu Z; Liu Z; Zhang N Quant Imaging Med Surg; 2023 Mar; 13(3):1384-1398. PubMed ID: 36915346 [TBL] [Abstract][Full Text] [Related]
25. A semiautomatic segmentation method for prostate in CT images using local texture classification and statistical shape modeling. Shahedi M; Halicek M; Guo R; Zhang G; Schuster DM; Fei B Med Phys; 2018 Jun; 45(6):2527-2541. PubMed ID: 29611216 [TBL] [Abstract][Full Text] [Related]
26. Deep learning method for localization and segmentation of abdominal CT. Dabiri S; Popuri K; Ma C; Chow V; Feliciano EMC; Caan BJ; Baracos VE; Beg MF Comput Med Imaging Graph; 2020 Oct; 85():101776. PubMed ID: 32862015 [TBL] [Abstract][Full Text] [Related]
27. Automated Magnetic Resonance Image Segmentation of Spinal Structures at the L4-5 Level with Deep Learning: 3D Reconstruction of Lumbar Intervertebral Foramen. Chen T; Su ZH; Liu Z; Wang M; Cui ZF; Zhao L; Yang LJ; Zhang WC; Liu X; Liu J; Tan SY; Li SL; Feng QJ; Pang SM; Lu H Orthop Surg; 2022 Sep; 14(9):2256-2264. PubMed ID: 35979964 [TBL] [Abstract][Full Text] [Related]
28. Feasibility of assessment of skeletal muscle mass on a single cross-sectional image at the level of the fourth thoracic vertebra. van Heusden HC; Swartz JE; Chargi N; de Jong PA; van Baal MCPM; Wegner I; de Bree R Eur J Radiol; 2021 Sep; 142():109879. PubMed ID: 34343845 [TBL] [Abstract][Full Text] [Related]
29. Use of automated assessment for determining associations of low muscle mass and muscle loss with overall survival in patients with colorectal cancer - A validation study. Smit KC; Derksen JWG; Kurk SA; Moeskops P; Koopman M; Veldhuis WB; May AM Clin Nutr ESPEN; 2024 Oct; 63():572-584. PubMed ID: 38997109 [TBL] [Abstract][Full Text] [Related]
30. Automated Segmentation of Abdominal Skeletal Muscle on Pediatric CT Scans Using Deep Learning. Castiglione J; Somasundaram E; Gilligan LA; Trout AT; Brady S Radiol Artif Intell; 2021 Mar; 3(2):e200130. PubMed ID: 33937859 [TBL] [Abstract][Full Text] [Related]
31. Automatic detection and segmentation of lumbar vertebrae from X-ray images for compression fracture evaluation. Kim KC; Cho HC; Jang TJ; Choi JM; Seo JK Comput Methods Programs Biomed; 2021 Mar; 200():105833. PubMed ID: 33250283 [TBL] [Abstract][Full Text] [Related]
32. A deep image-to-image network organ segmentation algorithm for radiation treatment planning: principles and evaluation. Marschner S; Datar M; Gaasch A; Xu Z; Grbic S; Chabin G; Geiger B; Rosenman J; Corradini S; Niyazi M; Heimann T; Möhler C; Vega F; Belka C; Thieke C Radiat Oncol; 2022 Jul; 17(1):129. PubMed ID: 35869525 [TBL] [Abstract][Full Text] [Related]
33. Auto-segmentation of important centers of growth in the pediatric skeleton to consider during radiation therapy based on deep learning. Qiu W; Zhang W; Ma X; Kong Y; Shi P; Fu M; Wang D; Hu M; Zhou X; Dong Q; Zhou Q; Zhu J Med Phys; 2023 Jan; 50(1):284-296. PubMed ID: 36047281 [TBL] [Abstract][Full Text] [Related]
34. ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images. Liu T; Pan J; Torigian DA; Xu P; Miao Q; Tong Y; Udupa JK Med Phys; 2020 Jul; 47(7):2986-2999. PubMed ID: 32170754 [TBL] [Abstract][Full Text] [Related]
35. Piloting a training program in computed tomography skeletal muscle assessment for registered dietitians. Martin L; Tom M; Basualdo-Hammond C; Baracos V; Gramlich L JPEN J Parenter Enteral Nutr; 2022 Aug; 46(6):1317-1325. PubMed ID: 35147237 [TBL] [Abstract][Full Text] [Related]
36. Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Hemke R; Buckless CG; Tsao A; Wang B; Torriani M Skeletal Radiol; 2020 Mar; 49(3):387-395. PubMed ID: 31396667 [TBL] [Abstract][Full Text] [Related]
37. Segmentation of multi-regional skeletal muscle in abdominal CT image for cirrhotic sarcopenia diagnosis. Song G; Zhou J; Wang K; Yao D; Chen S; Shi Y Front Neurosci; 2023; 17():1203823. PubMed ID: 37360174 [TBL] [Abstract][Full Text] [Related]
38. Fully-automated sarcopenia assessment in head and neck cancer: development and external validation of a deep learning pipeline. Ye Z; Saraf A; Ravipati Y; Hoebers F; Zha Y; Zapaishchykova A; Likitlersuang J; Tishler RB; Schoenfeld JD; Margalit DN; Haddad RI; Mak RH; Naser M; Wahid KA; Sahlsten J; Jaskari J; Kaski K; Mäkitie AA; Fuller CD; Aerts HJWL; Kann BH medRxiv; 2023 Mar; ():. PubMed ID: 36945519 [TBL] [Abstract][Full Text] [Related]
39. Computed tomography-determined skeletal muscle density predicts 3-year mortality in initial-dialysis patients in China. Sheng MJ; Cao JY; Hou SM; Li M; Wang Y; Fang Q; Miao AF; Yang M; Liu SS; Hu CH; Liu CL; Wang SY; Zheng J; Xiao JJ; Zhang XL; Liu H; Liu BC; Wang B J Cachexia Sarcopenia Muscle; 2023 Dec; 14(6):2569-2578. PubMed ID: 37722854 [TBL] [Abstract][Full Text] [Related]
40. Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks. Hashimoto F; Kakimoto A; Ota N; Ito S; Nishizawa S Radiol Phys Technol; 2019 Jun; 12(2):210-215. PubMed ID: 30937726 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]