These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39331180)

  • 1. Super learner model for classifying leukemia through gene expression monitoring.
    Selvaraj S; Alsayed AO; Ismail NA; Kavin BP; Onyema EM; Seng GH; Uchechi AQ
    Discov Oncol; 2024 Sep; 15(1):499. PubMed ID: 39331180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid super ensemble learning model for the early-stage prediction of diabetes risk.
    Doğru A; Buyrukoğlu S; Arı M
    Med Biol Eng Comput; 2023 Mar; 61(3):785-797. PubMed ID: 36602674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear programming based computational technique for leukemia classification using gene expression profile.
    Ilyas M; Aamir KM; Manzoor S; Deriche M
    PLoS One; 2023; 18(10):e0292172. PubMed ID: 37812613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute leukemia classification by ensemble particle swarm model selection.
    Escalante HJ; Montes-y-Gómez M; González JA; Gómez-Gil P; Altamirano L; Reyes CA; Reta C; Rosales A
    Artif Intell Med; 2012 Jul; 55(3):163-75. PubMed ID: 22510477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super Learner for Survival Data Prediction.
    Golmakani MK; Polley EC
    Int J Biostat; 2020 Feb; ():. PubMed ID: 32097120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive study of semi-supervised learning for DNA methylation-based supervised classification of central nervous system tumors.
    Tran QT; Alom MZ; Orr BA
    BMC Bioinformatics; 2022 Jun; 23(1):223. PubMed ID: 35676649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous ensemble learning for enhanced crash forecasts - A frequentist and machine learning based stacking framework.
    Ahmad N; Wali B; Khattak AJ
    J Safety Res; 2023 Feb; 84():418-434. PubMed ID: 36868672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study.
    Pirracchio R; Petersen ML; Carone M; Rigon MR; Chevret S; van der Laan MJ
    Lancet Respir Med; 2015 Jan; 3(1):42-52. PubMed ID: 25466337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient computer vision-based approach for acute lymphoblastic leukemia prediction.
    Almadhor A; Sattar U; Al Hejaili A; Ghulam Mohammad U; Tariq U; Ben Chikha H
    Front Comput Neurosci; 2022; 16():1083649. PubMed ID: 36507304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can Hyperparameter Tuning Improve the Performance of a Super Learner?: A Case Study.
    Wong J; Manderson T; Abrahamowicz M; Buckeridge DL; Tamblyn R
    Epidemiology; 2019 Jul; 30(4):521-531. PubMed ID: 30985529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving prediction of blood cancer using leukemia microarray gene data and Chi2 features with weighted convolutional neural network.
    Alabdulqader EA; Alarfaj AA; Umer M; Eshmawi AA; Alsubai S; Kim TH; Ashraf I
    Sci Rep; 2024 Jul; 14(1):15625. PubMed ID: 38972881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature Selection and Classification of Clinical Datasets Using Bioinspired Algorithms and Super Learner.
    Murugesan S; Bhuvaneswaran RS; Khanna Nehemiah H; Keerthana Sankari S; Nancy Jane Y
    Comput Math Methods Med; 2021; 2021():6662420. PubMed ID: 34055041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-Learning-Based Cancer Profiles Classification Using Gene Expression Data Profile.
    Almarzouki HZ
    J Healthc Eng; 2022; 2022():4715998. PubMed ID: 35035840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of acute myeloid leukemia M1 and M2 subtypes using machine learning.
    Liu K; Hu J
    Comput Biol Med; 2022 Aug; 147():105741. PubMed ID: 35738057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance comparison of machine learning models used for predicting subclinical mastitis in dairy cows: Bagging, boosting, stacking, and super-learner ensembles versus single machine learning models.
    Satoła A; Satoła K
    J Dairy Sci; 2024 Jun; 107(6):3959-3972. PubMed ID: 38310958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and Classification of Immature Leukocytes for Diagnosis of Acute Myeloid Leukemia Using Random Forest Algorithm.
    Dasariraju S; Huo M; McCalla S
    Bioengineering (Basel); 2020 Oct; 7(4):. PubMed ID: 33019619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super Learner Analysis of Electronic Adherence Data Improves Viral Prediction and May Provide Strategies for Selective HIV RNA Monitoring.
    Petersen ML; LeDell E; Schwab J; Sarovar V; Gross R; Reynolds N; Haberer JE; Goggin K; Golin C; Arnsten J; Rosen MI; Remien RH; Etoori D; Wilson IB; Simoni JM; Erlen JA; van der Laan MJ; Liu H; Bangsberg DR
    J Acquir Immune Defic Syndr; 2015 May; 69(1):109-18. PubMed ID: 25942462
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Li H; Xu C; Xin B; Zheng C; Zhao Y; Hao K; Wang Q; Wahl RL; Wang X; Zhou Y
    Theranostics; 2019; 9(16):4730-4739. PubMed ID: 31367253
    [No Abstract]   [Full Text] [Related]  

  • 20. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
    Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.