These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3933278)

  • 1. Reduction of acoustically induced auditory impairment by inhalation of carbogen gas. II. Temporary pure-tone induced depression of cochlear action potentials.
    Brown JJ; Meikle MB; Lee CA
    Acta Otolaryngol; 1985; 100(3-4):218-28. PubMed ID: 3933278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of acoustically-induced auditory impairment by inhalation of carbogen gas. I. Permanent noise-induced cochlear damage.
    Brown JJ; Vernon JA; Fenwick JA
    Acta Otolaryngol; 1982; 93(5-6):319-28. PubMed ID: 6808800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of carbogen on cochlear blood flow and hearing function following acute acoustic trauma in guinea pigs.
    Zhao J; Sun J; Liu Y
    Arch Med Res; 2012 Oct; 43(7):530-5. PubMed ID: 23085262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency effects of temporary N1 depression following acoustic overload.
    Mitchell C; Brummett R; Vernon J
    Arch Otolaryngol; 1977 Mar; 103(3):117-23. PubMed ID: 836238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of CO2- and O2-gas mixtures on laser Doppler measured cochlear and skin blood flow in guinea pigs.
    Kallinen J; Didier A; Miller JM; Nuttall A; Grénman R
    Hear Res; 1991 Oct; 55(2):255-62. PubMed ID: 1757293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of Carbogen, carbon dioxide, and oxygen on noise-induced hearing loss.
    Hatch M; Tsai M; LaRouere MJ; Nuttall AL; Miller JM
    Hear Res; 1991 Nov; 56(1-2):265-72. PubMed ID: 1769919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The effects of carbogen inhalation on microvascular within lateral wall of cochlear following acute acoustic trauma].
    Zhao J; Sun J; Kong W
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2008 Nov; 22(22):1036-9. PubMed ID: 19266820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of prednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear.
    Lamm K; Arnold W
    Hear Res; 1998 Jan; 115(1-2):149-61. PubMed ID: 9472744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of hyperbaric oxygen on experimental noise damage to the ears.
    Lamm H; Lamm K; Zimmermann W
    Arch Otorhinolaryngol; 1982; 236(3):237-44. PubMed ID: 7159276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological determinations of the effects of 1 kHz noise exposure on the high-frequency hearing of guinea pigs.
    Yamamura K; Saitoh S; Fujita T; Sawada Y; Ohno H
    Eur Arch Otorhinolaryngol; 1990; 247(4):206-10. PubMed ID: 2375862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.
    Reiss LA; Stark G; Nguyen-Huynh AT; Spear KA; Zhang H; Tanaka C; Li H
    Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of isobaric oxygen versus hyperbaric oxygen on the normal and noise-damaged hypoxic and ischemic guinea pig inner ear.
    Lamm K; Lamm C; Arnold W
    Adv Otorhinolaryngol; 1998; 54():59-85. PubMed ID: 9547878
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of carbogen on decreases in endocochlear potential and cochlear microcirculation induced by ischemia of the cochlea.
    Hua HB; Chang JS; Rui G
    Acta Otolaryngol; 1993 Nov; 113(6):720-4. PubMed ID: 8291429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig.
    Avan P; Bonfils P; Loth D; Elbez M; Erminy M
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3012-20. PubMed ID: 7759641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure.
    Scheibe F; Haupt H; Ludwig C
    Eur Arch Otorhinolaryngol; 1993; 250(5):281-5. PubMed ID: 8217130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of Caffeine and Hearing Recovery After Acoustic Overstimulation Events in a Guinea Pig Model.
    Zawawi F; Bezdjian A; Mujica-Mota M; Rappaport J; Daniel SJ
    JAMA Otolaryngol Head Neck Surg; 2016 Apr; 142(4):383-8. PubMed ID: 26940042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise-induced cochlear hypoxia is intensity dependent, correlates with hearing loss and precedes reduction of cochlear blood flow.
    Lamm K; Arnold W
    Audiol Neurootol; 1996; 1(3):148-60. PubMed ID: 9390798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects on cochlear microphonics in guinea pigs induced by prolonged exposure to low-frequency sound.
    Maehara N; Sadamoto T; Yamamura K
    Eur J Appl Physiol Occup Physiol; 1984; 52(3):305-9. PubMed ID: 6539683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of acute venous congestion on the guinea pig cochlea.
    Watanabe Y; Nakashima T; Yanagita N
    Eur Arch Otorhinolaryngol; 1990; 247(3):161-4. PubMed ID: 2112402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of 250 and 500 Hz tone exposure on the inner ear of guinea pigs as determined by electrophysiological techniques.
    Fujita T; Sugisawa T; Matsui T; Takahashi M; Inada N; Ishida A; Yamamura K
    ORL J Otorhinolaryngol Relat Spec; 1991; 53(3):147-52. PubMed ID: 1852412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.