These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 39333083)

  • 1. Probing the alkylidene carbene-strained alkyne equilibrium in polycyclic systems via the Fritsch-Buttenberg-Wiechell rearrangement.
    Anderson TE; Thamattoor DM; Phillips DL
    Nat Commun; 2024 Sep; 15(1):8313. PubMed ID: 39333083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fritsch-Buttenberg-Wiechell rearrangement of magnesium alkylidene carbenoids leading to the formation of alkynes.
    Kimura T; Sekiguchi K; Ando A; Imafuji A
    Beilstein J Org Chem; 2021; 17():1352-1359. PubMed ID: 34136014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkyne migration in alkylidene carbenoid species: a new method of polyyne synthesis.
    Eisler S; Chahal N; McDonald R; Tykwinski RR
    Chemistry; 2003 Jun; 9(11):2542-50. PubMed ID: 12794896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic aspects of alkyne migration in alkylidene carbenoid rearrangements.
    Bichler P; Chalifoux WA; Eisler S; Shi Shun AL; Chernick ET; Tykwinski RR
    Org Lett; 2009 Feb; 11(3):519-22. PubMed ID: 19128149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Fritsch-Buttenberg-Wiechell rearrangement: modern applications for an old reaction.
    Jahnke E; Tykwinski RR
    Chem Commun (Camb); 2010 May; 46(19):3235-49. PubMed ID: 20393642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot formation and derivatization of di- and triynes based on the Fritsch-Buttenberg-Wiechell rearrangement.
    Luu T; Morisaki Y; Cunningham N; Tykwinski RR
    J Org Chem; 2007 Dec; 72(25):9622-9. PubMed ID: 17999532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of unsymmetrically substituted 1,3-butadiynes and 1,3,5-hexatriynes via alkylidene carbenoid rearrangements.
    Shi Shun AL; Chernick ET; Eisler S; Tykwinski RR
    J Org Chem; 2003 Feb; 68(4):1339-47. PubMed ID: 12585873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Transition Metal Fragments on the Reverse Fritsch-Buttenberg-Wiechell Type Ring Contraction Reaction of Metallabenzynes to Metal-Carbene Complexes.
    Anusha C; De S; Parameswaran P
    J Phys Chem A; 2018 Mar; 122(8):2160-2167. PubMed ID: 29376351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fritsch-Buttenberg-Wiechell rearrangement in the aliphatic series.
    Rezaei H; Yamanoi S; Chemla F; Normant JF
    Org Lett; 2000 Feb; 2(4):419-21. PubMed ID: 10814340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Experimental and Computational Investigation of (α-Methylbenzylidene)carbene.
    Yang X; Languet K; Thamattoor DM
    J Org Chem; 2016 Sep; 81(18):8194-8. PubMed ID: 27537681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of naturally occurring acetylenes via an alkylidene carbenoid rearrangement.
    Shun AL; Tykwinski RR
    J Org Chem; 2003 Aug; 68(17):6810-3. PubMed ID: 12919055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na
    Singh RM; Nandini D; Bharadwaj KC; Gupta T; Singh RP
    Org Biomol Chem; 2017 Dec; 15(47):9979-9982. PubMed ID: 29167855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation.
    Zhang L
    Acc Chem Res; 2014 Mar; 47(3):877-88. PubMed ID: 24428596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyyne synthesis using carbene/carbenoid rearrangements.
    Chalifoux WA; Tykwinski RR
    Chem Rec; 2006; 6(4):169-82. PubMed ID: 16902994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Evaluation of 1,2-Migratory Aptitude in Alkylidene Carbenes.
    Dale HJA; Nottingham C; Poree C; Lloyd-Jones GC
    J Am Chem Soc; 2021 Feb; 143(4):2097-2107. PubMed ID: 33427456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical generation and trapping of 3-oxacyclohexyne.
    Fan R; Wen Y; Thamattoor DM
    Org Biomol Chem; 2017 Oct; 15(39):8270-8275. PubMed ID: 28936501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkylidenecarbenes, alkylidenecarbenoids, and competing species: which is responsible for vinylic nucleophilic substitution, [1 + 2] cycloadditions, 1,5-CH insertions, and the Fritsch-Buttenberg-Wiechell rearrangement?
    Knorr R
    Chem Rev; 2004 Sep; 104(9):3795-850. PubMed ID: 15352780
    [No Abstract]   [Full Text] [Related]  

  • 18. Photochemical Generation of Strained Cycloalkynes from Methylenecyclopropanes.
    Maurer DP; Fan R; Thamattoor DM
    Angew Chem Int Ed Engl; 2017 Apr; 56(16):4499-4501. PubMed ID: 28323378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and stability of a homologous series of triynol natural products and their analogues.
    Luu T; Tykwinski RR
    J Org Chem; 2006 Nov; 71(23):8982-5. PubMed ID: 17081037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ring Expansion of Alkylidenecarbenes Derived from Lactams, Lactones, and Thiolactones into Strained Heterocyclic Alkynes: A Theoretical Study.
    Le NNT; Just J; Pankauski JM; Rablen PR; Thamattoor DM
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30736417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.