These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 39333211)

  • 1. Identification of common biomarkers in diabetic kidney disease and cognitive dysfunction using machine learning algorithms.
    Peng J; Yang S; Zhou C; Qin C; Fang K; Tan Y; Da J; Zhang J; Zha Y
    Sci Rep; 2024 Sep; 14(1):22057. PubMed ID: 39333211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatics prediction and experimental verification of key biomarkers for diabetic kidney disease based on transcriptome sequencing in mice.
    Zhao J; He K; Du H; Wei G; Wen Y; Wang J; Zhou X; Wang J
    PeerJ; 2022; 10():e13932. PubMed ID: 36157062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of diagnostic markers related to oxidative stress and inflammatory response in diabetic kidney disease by machine learning algorithms: Evidence from human transcriptomic data and mouse experiments.
    Zhong M; Zhu E; Li N; Gong L; Xu H; Zhong Y; Gong K; Jiang S; Wang X; Fei L; Tang C; Lei Y; Wang Z; Zheng Z
    Front Endocrinol (Lausanne); 2023; 14():1134325. PubMed ID: 36960398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting diagnostic gene biomarkers in patients with diabetic kidney disease based on weighted gene co expression network analysis and machine learning algorithms.
    Gao Q; Jin H; Xu W; Wang Y
    Medicine (Baltimore); 2023 Oct; 102(43):e35618. PubMed ID: 37904449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of diagnostic gene biomarkers and immune infiltration in patients with diabetic kidney disease using machine learning strategies and bioinformatic analysis.
    Fu S; Cheng Y; Wang X; Huang J; Su S; Wu H; Yu J; Xu Z
    Front Med (Lausanne); 2022; 9():918657. PubMed ID: 36250071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Verification of Diagnostic Biomarkers for Glomerular Injury in Diabetic Nephropathy Based on Machine Learning Algorithms.
    Han H; Chen Y; Yang H; Cheng W; Zhang S; Liu Y; Liu Q; Liu D; Yang G; Li K
    Front Endocrinol (Lausanne); 2022; 13():876960. PubMed ID: 35663304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and validation of immune and cuproptosis - related genes for diabetic nephropathy by WGCNA and machine learning.
    Chen Y; Liao L; Wang B; Wu Z
    Front Immunol; 2024; 15():1332279. PubMed ID: 38390317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and analysis of cellular senescence-associated signatures in diabetic kidney disease by integrated bioinformatics analysis and machine learning.
    Luo Y; Zhang L; Zhao T
    Front Endocrinol (Lausanne); 2023; 14():1193228. PubMed ID: 37396184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease.
    Zhang X; Chao P; Zhang L; Xu L; Cui X; Wang S; Wusiman M; Jiang H; Lu C
    Front Immunol; 2023; 14():1030198. PubMed ID: 37063851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrin subunit beta 6 is a potential diagnostic marker for acute kidney injury in patients with diabetic kidney disease: a single cell sequencing data analysis.
    Yao C; Li Z; Su H; Sun K; Liu Q; Zhang Y; Zhu L; Jiang F; Fan Y; Shou S; Wu H; Jin H
    Ren Fail; 2024 Dec; 46(2):2409348. PubMed ID: 39356055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning-based metabolism-related genes signature and immune infiltration landscape in diabetic nephropathy.
    Zhang H; Hu J; Zhu J; Li Q; Fang L
    Front Endocrinol (Lausanne); 2022; 13():1026938. PubMed ID: 36482994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and functional analysis of the hub Ferroptosis-Related gene EZH2 in diabetic kidney disease.
    Wang H; Wang J; Ran Q; Leng Y; Liu T; Xiong Z; Zou D; Yang W
    Int Immunopharmacol; 2024 May; 133():112138. PubMed ID: 38678670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Markers for Diagnosis and Treatment of Diabetic Kidney Disease Based on the Ferroptosis and Immune.
    Ma J; Li C; Liu T; Zhang L; Wen X; Liu X; Fan W
    Oxid Med Cell Longev; 2022; 2022():9957172. PubMed ID: 36466094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of immune-associated biomarkers of diabetes nephropathy tubulointerstitial injury based on machine learning: a bioinformatics multi-chip integrated analysis.
    Wang L; Su J; Liu Z; Ding S; Li Y; Hou B; Hu Y; Dong Z; Tang J; Liu H; Liu W
    BioData Min; 2024 Jul; 17(1):20. PubMed ID: 38951833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a clinical prediction model for diabetic kidney disease with glucose and lipid metabolism disorders based on machine learning and bioinformatics technology.
    Bi Z; Wang LJ; Lin YX; Zhang YY; Wang SH; Fang ZH
    Eur Rev Med Pharmacol Sci; 2024 Feb; 28(3):863-878. PubMed ID: 38375694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of key immune-related genes and potential therapeutic drugs in diabetic nephropathy based on machine learning algorithms.
    Guo C; Wang W; Dong Y; Han Y
    BMC Med Genomics; 2024 Aug; 17(1):220. PubMed ID: 39187837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the molecular nexus of BTG2 in periodontitis and diabetic kidney disease.
    Pan B; Teng Y; Wang R; Chen D; Chen H
    BMC Med Genomics; 2024 Jun; 17(1):152. PubMed ID: 38831322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of potential key lipid metabolism-related genes involved in tubular injury in diabetic kidney disease by bioinformatics analysis.
    Fan Y; He J; Shi L; Zhang M; Chen Y; Xu L; Han N; Jiang Y
    Acta Diabetol; 2024 Aug; 61(8):1053-1068. PubMed ID: 38691241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and analysis of diverse cell death patterns in diabetic kidney disease using microarray-based transcriptome profiling and single-nucleus RNA sequencing.
    Luo Y; Liu L; Zhang C
    Comput Biol Med; 2024 Feb; 169():107780. PubMed ID: 38104515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of potential biomarkers of myopia based on machine learning algorithms.
    Zhang S; Wang T; Wang H; Gao B; Sun C
    BMC Ophthalmol; 2023 Sep; 23(1):388. PubMed ID: 37740201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.