These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 39333958)
1. An open-source fine-tuned large language model for radiological impression generation: a multi-reader performance study. Serapio A; Chaudhari G; Savage C; Lee YJ; Vella M; Sridhar S; Schroeder JL; Liu J; Yala A; Sohn JH BMC Med Imaging; 2024 Sep; 24(1):254. PubMed ID: 39333958 [TBL] [Abstract][Full Text] [Related]
2. Constructing a Large Language Model to Generate Impressions from Findings in Radiology Reports. Zhang L; Liu M; Wang L; Zhang Y; Xu X; Pan Z; Feng Y; Zhao J; Zhang L; Yao G; Chen X; Xie X Radiology; 2024 Sep; 312(3):e240885. PubMed ID: 39287525 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of large language models performance against humans for summarizing MRI knee radiology reports: A feasibility study. López-Úbeda P; Martín-Noguerol T; Díaz-Angulo C; Luna A Int J Med Inform; 2024 Jul; 187():105443. PubMed ID: 38615509 [TBL] [Abstract][Full Text] [Related]
4. Personalized Impression Generation for PET Reports Using Large Language Models. Tie X; Shin M; Pirasteh A; Ibrahim N; Huemann Z; Castellino SM; Kelly KM; Garrett J; Hu J; Cho SY; Bradshaw TJ J Imaging Inform Med; 2024 Apr; 37(2):471-488. PubMed ID: 38308070 [TBL] [Abstract][Full Text] [Related]
5. Automatic generation of conclusions from neuroradiology MRI reports through natural language processing. López-Úbeda P; Martín-Noguerol T; Escartín J; Luna A Neuroradiology; 2024 Apr; 66(4):477-485. PubMed ID: 38381144 [TBL] [Abstract][Full Text] [Related]
6. From jargon to clarity: Improving the readability of foot and ankle radiology reports with an artificial intelligence large language model. Butler JJ; Harrington MC; Tong Y; Rosenbaum AJ; Samsonov AP; Walls RJ; Kennedy JG Foot Ankle Surg; 2024 Jun; 30(4):331-337. PubMed ID: 38336501 [TBL] [Abstract][Full Text] [Related]
7. Performance of an Open-Source Large Language Model in Extracting Information from Free-Text Radiology Reports. Le Guellec B; Lefèvre A; Geay C; Shorten L; Bruge C; Hacein-Bey L; Amouyel P; Pruvo JP; Kuchcinski G; Hamroun A Radiol Artif Intell; 2024 Jul; 6(4):e230364. PubMed ID: 38717292 [TBL] [Abstract][Full Text] [Related]
8. Between Always and Never: Evaluating Uncertainty in Radiology Reports Using Natural Language Processing. Callen AL; Dupont SM; Price A; Laguna B; McCoy D; Do B; Talbott J; Kohli M; Narvid J J Digit Imaging; 2020 Oct; 33(5):1194-1201. PubMed ID: 32813098 [TBL] [Abstract][Full Text] [Related]
9. Fine-Tuned Large Language Model for Extracting Patients on Pretreatment for Lung Cancer from a Picture Archiving and Communication System Based on Radiological Reports. Yasaka K; Kanzawa J; Kanemaru N; Koshino S; Abe O J Imaging Inform Med; 2024 Jul; ():. PubMed ID: 38955964 [TBL] [Abstract][Full Text] [Related]
10. Automated classification of brain MRI reports using fine-tuned large language models. Kanzawa J; Yasaka K; Fujita N; Fujiwara S; Abe O Neuroradiology; 2024 Jul; ():. PubMed ID: 38995393 [TBL] [Abstract][Full Text] [Related]
11. Automatic Personalized Impression Generation for PET Reports Using Large Language Models. Tie X; Shin M; Pirasteh A; Ibrahim N; Huemann Z; Castellino SM; Kelly KM; Garrett J; Hu J; Cho SY; Bradshaw TJ ArXiv; 2023 Oct; ():. PubMed ID: 37904738 [TBL] [Abstract][Full Text] [Related]
13. Preliminary assessment of automated radiology report generation with generative pre-trained transformers: comparing results to radiologist-generated reports. Nakaura T; Yoshida N; Kobayashi N; Shiraishi K; Nagayama Y; Uetani H; Kidoh M; Hokamura M; Funama Y; Hirai T Jpn J Radiol; 2024 Feb; 42(2):190-200. PubMed ID: 37713022 [TBL] [Abstract][Full Text] [Related]
14. From technical to understandable: Artificial Intelligence Large Language Models improve the readability of knee radiology reports. Butler JJ; Puleo J; Harrington MC; Dahmen J; Rosenbaum AJ; Kerkhoffs GMMJ; Kennedy JG Knee Surg Sports Traumatol Arthrosc; 2024 May; 32(5):1077-1086. PubMed ID: 38488217 [TBL] [Abstract][Full Text] [Related]
15. What Influences the Way Radiologists Express Themselves in Their Reports? A Quantitative Assessment Using Natural Language Processing. Crombé A; Seux M; Bratan F; Bergerot JF; Banaste N; Thomson V; Lecomte JC; Gorincour G J Digit Imaging; 2022 Aug; 35(4):993-1007. PubMed ID: 35318544 [TBL] [Abstract][Full Text] [Related]
16. Towards automated generation of curated datasets in radiology: Application of natural language processing to unstructured reports exemplified on CT for pulmonary embolism. Weikert T; Nesic I; Cyriac J; Bremerich J; Sauter AW; Sommer G; Stieltjes B Eur J Radiol; 2020 Apr; 125():108862. PubMed ID: 32135443 [TBL] [Abstract][Full Text] [Related]
18. Vision-Language Model for Generating Textual Descriptions From Clinical Images: Model Development and Validation Study. Ji J; Hou Y; Chen X; Pan Y; Xiang Y JMIR Form Res; 2024 Feb; 8():e32690. PubMed ID: 38329788 [TBL] [Abstract][Full Text] [Related]
19. Automated Radiology Report Summarization Using an Open-Source Natural Language Processing Pipeline. Goff DJ; Loehfelm TW J Digit Imaging; 2018 Apr; 31(2):185-192. PubMed ID: 29086081 [TBL] [Abstract][Full Text] [Related]
20. Automatic structuring of radiology reports with on-premise open-source large language models. Woźnicki P; Laqua C; Fiku I; Hekalo A; Truhn D; Engelhardt S; Kather J; Foersch S; D'Antonoli TA; Pinto Dos Santos D; Baeßler B; Laqua FC Eur Radiol; 2024 Oct; ():. PubMed ID: 39390261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]