These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 39335314)
1. Optimized Machine Learning Models for Predicting Core Body Temperature in Dairy Cows: Enhancing Accuracy and Interpretability for Practical Livestock Management. Li D; Yan G; Li F; Lin H; Jiao H; Han H; Liu W Animals (Basel); 2024 Sep; 14(18):. PubMed ID: 39335314 [TBL] [Abstract][Full Text] [Related]
2. Prediction of body condition in Jersey dairy cattle from 3D-images using machine learning techniques. Stephansen RB; Manzanilla-Pech CIV; Gebreyesus G; Sahana G; Lassen J J Anim Sci; 2023 Jan; 101():. PubMed ID: 37943499 [TBL] [Abstract][Full Text] [Related]
3. Hybrid machine learning approach for accurate prediction of the drilling rock index. Shahani NM; Zheng X; Wei X; Hongwei J Sci Rep; 2024 Oct; 14(1):24080. PubMed ID: 39402133 [TBL] [Abstract][Full Text] [Related]
4. Prediction of Individual Gas Yields of Supercritical Water Gasification of Lignocellulosic Biomass by Machine Learning Models. Khandelwal K; Dalai AK Molecules; 2024 May; 29(10):. PubMed ID: 38792198 [TBL] [Abstract][Full Text] [Related]
6. Enhanced desalination with polyamide thin-film membranes using ensemble ML chemometric methods and SHAP analysis. Usman J; Abba SI; Abdu FJ; Yogarathinam LT; Usman AG; Lawal D; Salhi B; Aljundi IH RSC Adv; 2024 Oct; 14(43):31259-31273. PubMed ID: 39359337 [TBL] [Abstract][Full Text] [Related]
7. Real-time milk analysis integrated with stacking ensemble learning as a tool for the daily prediction of cheese-making traits in Holstein cattle. Mota LFM; Giannuzzi D; Bisutti V; Pegolo S; Trevisi E; Schiavon S; Gallo L; Fineboym D; Katz G; Cecchinato A J Dairy Sci; 2022 May; 105(5):4237-4255. PubMed ID: 35282909 [TBL] [Abstract][Full Text] [Related]
8. Supervised learning techniques for dairy cattle body weight prediction from 3D digital images. Gebreyesus G; Milkevych V; Lassen J; Sahana G Front Genet; 2022; 13():947176. PubMed ID: 36685975 [No Abstract] [Full Text] [Related]
9. Seasonal prediction of daily PM Wu Y; Lin S; Shi K; Ye Z; Fang Y Environ Sci Pollut Res Int; 2022 Jun; 29(30):45821-45836. PubMed ID: 35150424 [TBL] [Abstract][Full Text] [Related]
10. Prediction of sepsis mortality in ICU patients using machine learning methods. Gao J; Lu Y; Ashrafi N; Domingo I; Alaei K; Pishgar M BMC Med Inform Decis Mak; 2024 Aug; 24(1):228. PubMed ID: 39152423 [TBL] [Abstract][Full Text] [Related]
11. Predicting methane emission in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. Shadpour S; Chud TCS; Hailemariam D; Plastow G; Oliveira HR; Stothard P; Lassen J; Miglior F; Baes CF; Tulpan D; Schenkel FS J Dairy Sci; 2022 Oct; 105(10):8272-8285. PubMed ID: 36055858 [TBL] [Abstract][Full Text] [Related]
12. An Ensemble Learning Approach to Improving Prediction of Case Duration for Spine Surgery: Algorithm Development and Validation. Gabriel RA; Harjai B; Simpson S; Du AL; Tully JL; George O; Waterman R JMIR Perioper Med; 2023 Jan; 6():e39650. PubMed ID: 36701181 [TBL] [Abstract][Full Text] [Related]
13. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511 [TBL] [Abstract][Full Text] [Related]
14. Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach. Cakiroglu C; Aydın Y; Bekdaş G; Geem ZW Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444890 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data. Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589 [TBL] [Abstract][Full Text] [Related]
16. A Comparative Analysis of XGBoost and Neural Network Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data. M'hamdi O; Takács S; Palotás G; Ilahy R; Helyes L; Pék Z Plants (Basel); 2024 Mar; 13(5):. PubMed ID: 38475592 [TBL] [Abstract][Full Text] [Related]
17. A hybrid approach for modeling bicycle crash frequencies: Integrating random forest based SHAP model with random parameter negative binomial regression model. Ding H; Wang R; Chen T; Sze NN; Chung H; Dong N Accid Anal Prev; 2024 Dec; 208():107778. PubMed ID: 39288451 [TBL] [Abstract][Full Text] [Related]
18. The Application of Machine Learning Algorithms to Bond Strength between Steel Rebars and Concrete Using Bayesian Optimization. Yan H; Xie N; Shen D Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336381 [TBL] [Abstract][Full Text] [Related]
19. A data-driven interpretable ensemble framework based on tree models for forecasting the occurrence of COVID-19 in the USA. Zheng HL; An SY; Qiao BJ; Guan P; Huang DS; Wu W Environ Sci Pollut Res Int; 2023 Jan; 30(5):13648-13659. PubMed ID: 36131178 [TBL] [Abstract][Full Text] [Related]
20. Accurate prediction of calving in dairy cows by applying feature engineering and machine learning. Vázquez-Diosdado JA; Gruhier J; Miguel-Pacheco GG; Green M; Dottorini T; Kaler J Prev Vet Med; 2023 Oct; 219():106007. PubMed ID: 37647720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]