These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39336262)
1. Fatigue Life Prediction of a SAE Keyhole Specimen as a Subcase of Certification by Analysis. Wu X; Zhang Z; Paraschivoiu D Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336262 [TBL] [Abstract][Full Text] [Related]
2. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation. Shiraiwa T; Briffod F; Enoki M Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226 [TBL] [Abstract][Full Text] [Related]
3. Low Cycle Fatigue Life Assessment Based on the Accumulated Plastic Strain Energy Density. Hu Y; Shi J; Cao X; Zhi J Materials (Basel); 2021 May; 14(9):. PubMed ID: 34063256 [TBL] [Abstract][Full Text] [Related]
4. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain. Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738 [TBL] [Abstract][Full Text] [Related]
5. Effect of Specimen Thickness and Stress Intensity Factor Range on Plasticity-Induced Fatigue Crack Closure in A7075-T6 Alloy. Masuda K; Ishihara S; Oguma N Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572686 [TBL] [Abstract][Full Text] [Related]
6. Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life. Noraphaiphipaksa N; Manonukul A; Kanchanomai C Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772522 [TBL] [Abstract][Full Text] [Related]
7. Reliability-Based Low Fatigue Life Analysis of Turbine Blisk with Generalized Regression Extreme Neural Network Method. Zhang C; Wei J; Jing H; Fei C; Tang W Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083468 [TBL] [Abstract][Full Text] [Related]
8. A Novel Method to Describe Large-Range Stress-Strain Relations of Elastic-Plastic Materials Based on Energy Equivalence Principle. Yu S; Cai L; Wang L; Lang L Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769897 [TBL] [Abstract][Full Text] [Related]
9. Effect of Rod-like Structure on Fatigue Life, Short Surface Crack Initiation and Growth Characteristics of Extruded Aluminum Alloy A2024 (Analysis via Modified Linear Elastic Fracture Mechanics). Masuda K; Ishihara S; Shibata H; Oguma N Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947131 [TBL] [Abstract][Full Text] [Related]
10. Numerical-experimental procedure for predicting fatigue life in SAE AMS 7475-T7351 aluminum alloy considering the effect of stress ratio. Montezuma MFV; Deus EP; Rüchert COFT; Carvalho MC; Silva Filho MAE An Acad Bras Cienc; 2024; 96(suppl 1):e20231400. PubMed ID: 39258705 [TBL] [Abstract][Full Text] [Related]
11. FEM Simulations of Fatigue Crack Initiation in the Oligocrystalline Microstructure of Stents. Lasko G; Schmauder S; Yang Y; Weiss S; Dogahe K Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687693 [TBL] [Abstract][Full Text] [Related]
12. Finite element modeling of damage accumulation in trabecular bone under cyclic loading. Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682 [TBL] [Abstract][Full Text] [Related]
13. Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters. Schäfer BJ; Sonnweber-Ribic P; Ul Hassan H; Hartmaier A Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31487915 [TBL] [Abstract][Full Text] [Related]
14. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method. Alshoaibi AM Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630 [TBL] [Abstract][Full Text] [Related]
15. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material. Alshoaibi AM; Fageehi YA Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568 [TBL] [Abstract][Full Text] [Related]
16. Low-Cycle Fatigue Behavior of Wire and Arc Additively Manufactured Ti-6Al-4V Material. Springer S; Leitner M; Gruber T; Oberwinkler B; Lasnik M; Grün F Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763361 [TBL] [Abstract][Full Text] [Related]
17. Very High Cycle Fatigue Failure Analysis and Life Prediction of Cr-Ni-W Gear Steel Based on Crack Initiation and Growth Behaviors. Deng H; Li W; Sakai T; Sun Z Materials (Basel); 2015 Dec; 8(12):8338-8354. PubMed ID: 28793714 [TBL] [Abstract][Full Text] [Related]
18. Prediction of the Ultra-Low-Cycle Fatigue Damage of Q345qC Steel and its Weld Joint. Tian Q; Zhuge H; Xie X Materials (Basel); 2019 Dec; 12(23):. PubMed ID: 31816879 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials. Kolken HMA; Garcia AF; Plessis AD; Meynen A; Rans C; Scheys L; Mirzaali MJ; Zadpoor AA Acta Biomater; 2022 Jan; 138():398-409. PubMed ID: 34763109 [TBL] [Abstract][Full Text] [Related]