These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Identification of a novel dehydration responsive gene, drp10, from the African clawed frog, Xenopus laevis. Biggar KK; Biggar Y; Storey KB J Exp Zool A Ecol Genet Physiol; 2015 Jul; 323(6):375-81. PubMed ID: 25866033 [TBL] [Abstract][Full Text] [Related]
4. Increased transcript levels and kinetic function of pyruvate kinase during severe dehydration in aestivating African clawed frogs, Xenopus laevis. Dawson NJ; Biggar Y; Malik AI; Storey KB Comp Biochem Physiol B Biochem Mol Biol; 2018 Oct; 224():245-252. PubMed ID: 29331521 [TBL] [Abstract][Full Text] [Related]
5. Mind the GAP: Purification and characterization of urea resistant GAPDH during extreme dehydration. Hadj-Moussa H; Wade SC; Childers CL; Storey KB Proteins; 2021 May; 89(5):544-557. PubMed ID: 33368595 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional regulation of antioxidant enzymes by FoxO1 under dehydration stress. Malik AI; Storey KB Gene; 2011 Oct; 485(2):114-9. PubMed ID: 21708231 [TBL] [Abstract][Full Text] [Related]
7. Purification and characterization of a urea sensitive lactate dehydrogenase from the liver of the African clawed frog, Xenopus laevis. Katzenback BA; Dawson NJ; Storey KB J Comp Physiol B; 2014 Jul; 184(5):601-11. PubMed ID: 24651940 [TBL] [Abstract][Full Text] [Related]
8. Protein arginine methyltransferase Prmt5-Mep50 methylates histones H2A and H4 and the histone chaperone nucleoplasmin in Xenopus laevis eggs. Wilczek C; Chitta R; Woo E; Shabanowitz J; Chait BT; Hunt DF; Shechter D J Biol Chem; 2011 Dec; 286(49):42221-42231. PubMed ID: 22009756 [TBL] [Abstract][Full Text] [Related]
9. Purification and characterization of a urea sensitive lactate dehydrogenase from skeletal muscle of the African clawed frog, Xenopus laevis. Childers CL; Storey KB J Comp Physiol B; 2019 Apr; 189(2):271-281. PubMed ID: 30631901 [TBL] [Abstract][Full Text] [Related]
10. The regulation of heat shock proteins in response to dehydration in Xenopus laevis. Luu BE; Wijenayake S; Malik AI; Storey KB Cell Stress Chaperones; 2018 Jan; 23(1):45-53. PubMed ID: 28676984 [TBL] [Abstract][Full Text] [Related]
11. The regulation of Akt and FoxO transcription factors during dehydration in the African clawed frog (Xenopus laevis). Luu BE; Zhang Y; Storey KB Cell Stress Chaperones; 2020 Nov; 25(6):887-897. PubMed ID: 32451989 [TBL] [Abstract][Full Text] [Related]
12. Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase. Burgos ES; Wilczek C; Onikubo T; Bonanno JB; Jansong J; Reimer U; Shechter D J Biol Chem; 2015 Apr; 290(15):9674-89. PubMed ID: 25713080 [TBL] [Abstract][Full Text] [Related]
13. Non-Histone Arginine Methylation by Protein Arginine Methyltransferases. Al-Hamashi AA; Diaz K; Huang R Curr Protein Pept Sci; 2020; 21(7):699-712. PubMed ID: 32379587 [TBL] [Abstract][Full Text] [Related]
14. Regulation of nuclear factor of activated T cells (NFAT) and downstream myogenic proteins during dehydration in the African clawed frog. Zhang Y; English SG; Storey KB Mol Biol Rep; 2018 Oct; 45(5):751-761. PubMed ID: 29923155 [TBL] [Abstract][Full Text] [Related]
15. Knocking out histone methyltransferase PRMT1 leads to stalled tadpole development and lethality in Xenopus tropicalis. Shibata Y; Okada M; Miller TC; Shi YB Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129482. PubMed ID: 31734465 [TBL] [Abstract][Full Text] [Related]
16. The macromolecular complexes of histones affect protein arginine methyltransferase activities. Fulton MD; Cao M; Ho MC; Zhao X; Zheng YG J Biol Chem; 2021 Oct; 297(4):101123. PubMed ID: 34492270 [TBL] [Abstract][Full Text] [Related]
17. FoxO4 activity is regulated by phosphorylation and the cellular environment during dehydration in the African clawed frog, Xenopus laevis. Zhang Y; Luu BE; Storey KB Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1721-1728. PubMed ID: 29746959 [TBL] [Abstract][Full Text] [Related]
18. Pro- and anti-apoptotic microRNAs are differentially regulated during estivation in Xenopus laevis. Biggar Y; Ingelson-Filpula WA; Storey KB Gene; 2022 Apr; 819():146236. PubMed ID: 35114277 [TBL] [Abstract][Full Text] [Related]
19. DNA methylation clocks for clawed frogs reveal evolutionary conservation of epigenetic aging. Zoller JA; Parasyraki E; Lu AT; Haghani A; Niehrs C; Horvath S Geroscience; 2024 Feb; 46(1):945-960. PubMed ID: 37270437 [TBL] [Abstract][Full Text] [Related]
20. Epigenetic control via allosteric regulation of mammalian protein arginine methyltransferases. Jain K; Jin CY; Clarke SG Proc Natl Acad Sci U S A; 2017 Sep; 114(38):10101-10106. PubMed ID: 28874563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]