These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 39337726)

  • 1. A Low-Power Optoelectronic Receiver IC for Short-Range LiDAR Sensors in 180 nm CMOS.
    Choi S; Chon Y; Park SM
    Micromachines (Basel); 2024 Aug; 15(9):. PubMed ID: 39337726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CMOS Optoelectronic Receiver IC with an On-Chip Avalanche Photodiode for Home-Monitoring LiDAR Sensors.
    Joo JE; Lee MJ; Park SM
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CMOS Integrator-Based Clock-Free Time-to-Digital Converter for Home-Monitoring LiDAR Sensors.
    He Y; Park SM
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Low-Cost Measurement Methodology for LiDAR Receiver Integrated Circuits.
    Joo JE; Choi S; Chon Y; Park SM
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Indoor-Monitoring LiDAR Sensor for Patients with Alzheimer Disease Residing in Long-Term Care Facilities.
    Joo JE; Hu Y; Kim S; Kim H; Park S; Kim JH; Kim Y; Park SM
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CMOS Current-Mode Vertical-Cavity-Semiconductor-Emitting-Laser Diode Driver for Short-Range LiDAR Sensors.
    Zhang X; Choi S; Chon Y; Park SM
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy-Power Controllable LiDAR Sensor System with 3D Object Recognition for Autonomous Vehicle.
    Lee S; Lee D; Choi P; Park D
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanosecond pulsed CMOS LED for all-silicon time-of-flight ranging.
    Li Z; Ram RJ
    Opt Express; 2023 Jul; 31(15):24307-24319. PubMed ID: 37475261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CMOS SPAD Imager with Collision Detection and 128 Dynamically Reallocating TDCs for Single-Photon Counting and 3D Time-of-Flight Imaging.
    Zhang C; Lindner S; Antolovic IM; Wolf M; Charbon E
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Cyclic Vernier Two-Step TDC for High Input Range Time-of-Flight Sensor Using Startup Time Correction Technique.
    Nguyen VN; Duong DN; Chung Y; Lee JW
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Time-to-Digital Converter for Low-Power Consumption Single Slope Analog-to-Digital Converters in a High-Speed CMOS Image Sensor.
    Li Z; Gao Z
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Low-Power CMOS Wireless Acoustic Sensing Platform for Remote Surveillance Applications.
    Wang Y; Zhou R; Liu Z; Yan B
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 250 m Direct Time-of-Flight Ranging System Based on a Synthesis of Sub-Ranging Images and a Vertical Avalanche Photo-Diodes (VAPD) CMOS Image Sensor.
    Hirose Y; Koyama S; Ishii M; Saitou S; Takemoto M; Nose Y; Inoue A; Sakata Y; Sugiura Y; Kabe T; Usuda M; Kasuga S; Mori M; Odagawa A; Tanaka T
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Photon Avalanche Diode with Enhanced NIR-Sensitivity for Automotive LIDAR Systems.
    Takai I; Matsubara H; Soga M; Ohta M; Ogawa M; Yamashita T
    Sensors (Basel); 2016 Mar; 16(4):459. PubMed ID: 27043569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Speed Fully Differential Two-Step ADC Design Method for CMOS Image Sensor.
    Guo Z; Wang Y; Xu R; Yu N
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 256 × 256 LiDAR Imaging System Based on a 200 mW SPAD-Based SoC with Microlens Array and Lightweight RGB-Guided Depth Completion Neural Network.
    Wang J; Li J; Wu Y; Yu H; Cui L; Sun M; Chiang PY
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient CORDIC Iteration Design of LiDAR Sensors' Point-Cloud Map Reconstruction Technology.
    Fan YC; Liu YC; Chu CA
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical Modelling of SPADs for Time-of-Flight LiDAR.
    Incoronato A; Locatelli M; Zappa F
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 0.5-V 281-nW Versatile Mixed-Mode Filter Using Multiple-Input/Output Differential Difference Transconductance Amplifiers.
    Khateb F; Kumngern M; Kulej T
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dToF Ranging Sensor with Accurate Photon Detector Measurements for LiDAR Applications.
    Yu H; Wang L; Xu J; Chiang PY
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.