These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 39338614)
1. Looping Flexible Fluoropolymer Microcapillary Film Extends Analysis Times for Vertical Microfluidic Blood Testing. Sarıyer RM; Gill KK; Needs SH; Reis NM; Jones CI; Edwards AD Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338614 [TBL] [Abstract][Full Text] [Related]
2. Time- and distance-resolved robotic imaging of fluid flow in vertical microfluidic strips: a new technique for quantitative, multiparameter measurement of global haemostasis. Sarıyer RM; Gill K; Needs SH; Hodge D; Reis NM; Jones CI; Edwards AD Sens Diagn; 2023 Nov; 2(6):1623-1637. PubMed ID: 38013763 [TBL] [Abstract][Full Text] [Related]
3. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices. Lim H; Jafry AT; Lee J Molecules; 2019 Aug; 24(16):. PubMed ID: 31394856 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars. Kasama T; Kaji N; Tokeshi M; Baba Y Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286 [TBL] [Abstract][Full Text] [Related]
5. Design of pressure-driven microfluidic networks using electric circuit analogy. Oh KW; Lee K; Ahn B; Furlani EP Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505 [TBL] [Abstract][Full Text] [Related]
7. Next generation microfluidics: fulfilling the promise of lab-on-a-chip technologies. Gurkan UA; Wood DK; Carranza D; Herbertson LH; Diamond SL; Du E; Guha S; Di Paola J; Hines PC; Papautsky I; Shevkoplyas SS; Sniadecki NJ; Pamula VK; Sundd P; Rizwan A; Qasba P; Lam WA Lab Chip; 2024 Mar; 24(7):1867-1874. PubMed ID: 38487919 [TBL] [Abstract][Full Text] [Related]
8. Microfluidics in structured multimaterial fibers. Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819 [TBL] [Abstract][Full Text] [Related]
9. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Samiei E; Tabrizian M; Hoorfar M Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540 [TBL] [Abstract][Full Text] [Related]
10. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication. Smith S; Sypabekova M; Kim S Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785723 [TBL] [Abstract][Full Text] [Related]
11. Digital monitoring of the microchannel filling flow dynamics using a non-contactless smartphone-based nano-liter precision flow velocity meter. Xu W; Atik AY; Beker L; Ceylan Koydemir H Biosens Bioelectron; 2024 May; 252():116130. PubMed ID: 38417285 [TBL] [Abstract][Full Text] [Related]
12. Rapid Fabrication of Custom Microfluidic Devices for Research and Educational Applications. Levis M; Ontiveros F; Juan J; Kavanagh A; Zartman JJ J Vis Exp; 2019 Nov; (153):. PubMed ID: 31814613 [TBL] [Abstract][Full Text] [Related]
13. On-chip fabrication of calcium carbonate nanoparticles loaded with various compounds using microfluidic approach. Arabuli KV; Kopoleva E; Akenoun A; Mikhailova LV; Petrova E; Muslimov AR; Senichkina DA; Tsymbal S; Shakirova AI; Ignatiev AI; Lepik KV; Zyuzin MV Biomater Adv; 2024 Jul; 161():213904. PubMed ID: 38805763 [TBL] [Abstract][Full Text] [Related]
14. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. Tarn MD; Pamme N Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic Lab-on-CMOS Packaging Using Wafer-Level Molding and 3D-Printed Interconnects. Dawes J; Chou TH; Shen B; Johnston ML IEEE Trans Biomed Circuits Syst; 2024 Aug; 18(4):821-833. PubMed ID: 39167525 [TBL] [Abstract][Full Text] [Related]
16. A smart and portable micropump for stable liquid delivery. Zhang X; Xia K; Ji A; Xiang N Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events. Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R Methods Mol Biol; 2017; 1572():71-88. PubMed ID: 28299682 [TBL] [Abstract][Full Text] [Related]
18. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device. Robidoux J; Laforce-Lavoie A; Charette SJ; Shevkoplyas SS; Yoshida T; Lewin A; Brouard D Transfusion; 2020 May; 60(5):1032-1041. PubMed ID: 32237236 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies. Sun YS Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318 [TBL] [Abstract][Full Text] [Related]
20. Distillation and detection of SO2 using a microfluidic chip. Ju WJ; Fu LM; Yang RJ; Lee CL Lab Chip; 2012 Feb; 12(3):622-6. PubMed ID: 22159042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]