These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39338664)
1. A Remote Two-Point Magnetic Localization Method Based on SQUID Magnetometers and Magnetic Gradient Tensor Invariants. Zhang Y; Liu G; Wang C; Qiu L; Wang H; Liu W Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338664 [TBL] [Abstract][Full Text] [Related]
2. Structural Design and Parameter Optimization of Magnetic Gradient Tensor Measurement System. Liu G; Zhang Y; Liu W Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000862 [TBL] [Abstract][Full Text] [Related]
3. Two-Point Localization Algorithm of a Magnetic Target Based on Tensor Geometric Invariant. Chi C; Wang D; Tao R; Li J; Wang Y; Yu Z; Yu L Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610434 [TBL] [Abstract][Full Text] [Related]
4. A Rapid Localization Method Based on Super Resolution Magnetic Array Information for Unknown Number Magnetic Sources. Miao L; Zhang T; Zuo C; Chen Z; Yang X; Ouyang J Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794081 [TBL] [Abstract][Full Text] [Related]
5. Theoretical foundation for real-time prostate localization using an inductively coupled transmitter and a superconducting quantum interference device (SQUID) magnetometer system. McGary JE J Appl Clin Med Phys; 2004; 5(4):29-45. PubMed ID: 15738919 [TBL] [Abstract][Full Text] [Related]
6. A Modified Magnetic Gradient Contraction Based Method for Ferromagnetic Target Localization. Wang C; Zhang X; Qu X; Pan X; Fang G; Chen L Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999322 [TBL] [Abstract][Full Text] [Related]
7. A Small Target Localization Method Based on the Magnetic Gradient Tensor. Wang B; Ren G; Li Z; Li Q; Cai Z Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295992 [TBL] [Abstract][Full Text] [Related]
8. Low-Cost Fetal Magnetocardiography: A Comparison of Superconducting Quantum Interference Device and Optically Pumped Magnetometers. Strand S; Lutter W; Strasburger JF; Shah V; Baffa O; Wakai RT J Am Heart Assoc; 2019 Aug; 8(16):e013436. PubMed ID: 31394997 [TBL] [Abstract][Full Text] [Related]
9. A Robust Tracking Method for Multiple Moving Targets Based on Equivalent Magnetic Force. Wang Y; Fu Q; Sui Y Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422447 [TBL] [Abstract][Full Text] [Related]
10. Simulation Study of Different OPM-MEG Measurement Components. Marhl U; Sander T; Jazbinšek V Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590874 [TBL] [Abstract][Full Text] [Related]
11. Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems. Li Q; Li Z; Zhang Y; Yin G Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29373544 [TBL] [Abstract][Full Text] [Related]
12. Fine-Tuning and Optimization of Superconducting Quantum Magnetic Sensors by Thermal Annealing. Vettoliere A; Ruggiero B; Valentino M; Silvestrini P; Granata C Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438525 [TBL] [Abstract][Full Text] [Related]
13. Fast Localization and Characterization of Underground Targets with a Towed Transient Electromagnetic Array System. Wang L; Zhang S; Chen S; Luo C Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214550 [TBL] [Abstract][Full Text] [Related]
14. Development of an HTS-SQUID-Based Receiver for Long-Range Magnetic Induction Communication in Extreme Environments. Li Y; Xu T; Wang Y; Wang F; Gan Z Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177638 [TBL] [Abstract][Full Text] [Related]
15. Ferromagnetic mass localization in check point configuration using a levenberg marquardt algorithm. Alimi R; Geron N; Weiss E; Ram-Cohen T Sensors (Basel); 2009; 9(11):8852-62. PubMed ID: 22291540 [TBL] [Abstract][Full Text] [Related]
16. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms. Voigt J; Knappe-Grüneberg S; Gutkelch D; Haueisen J; Neuber S; Schnabel A; Burghoff M Rev Sci Instrum; 2015 May; 86(5):055109. PubMed ID: 26026560 [TBL] [Abstract][Full Text] [Related]
17. Measuring MEG closer to the brain: Performance of on-scalp sensor arrays. Iivanainen J; Stenroos M; Parkkonen L Neuroimage; 2017 Feb; 147():542-553. PubMed ID: 28007515 [TBL] [Abstract][Full Text] [Related]
18. Magnetic Relaxometry with an Atomic Magnetometer and SQUID Sensors on Targeted Cancer Cells. Johnson C; Adolphi NL; Butler KL; Debbie M L; Larson R; Schwindt PD; Flynn ER J Magn Magn Mater; 2012 Aug; 324(17):2613-2619. PubMed ID: 22773885 [TBL] [Abstract][Full Text] [Related]
19. A fast tracking method for magnetic abnormalities using distributed Overhauser magnetometer system based on genetic algorithm. Luo W; Ge J; Liu H; Wu S; Wang H; Yuan Z; Luan X; Dong H; Fukushima EF Rev Sci Instrum; 2023 Jun; 94(6):. PubMed ID: 37862498 [TBL] [Abstract][Full Text] [Related]
20. Improvement of Reproducibility of Magnetic Moment Detected by a SQUID Magnetometer Through Radial Offset Measurement on a YIG Sphere. Matsumoto N; Dennis CL; Shull RD IEEE Trans Magn; 2019 Feb; 55(2):. PubMed ID: 38486836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]