These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 39338791)
1. Inferring ECG Waveforms from PPG Signals with a Modified U-Net Neural Network. Pinto RA; De Oliveira HS; Souto E; Giusti R; Veras R Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338791 [TBL] [Abstract][Full Text] [Related]
2. Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks. Ramesh J; Solatidehkordi Z; Aburukba R; Sagahyroon A Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770543 [TBL] [Abstract][Full Text] [Related]
3. BioTranslator: Inferring R-Peaks from Ambulatory Wrist-Worn PPG Signal. Everson L; Biswas D; Verhoef BE; Kim CH; Van Hoof C; Konijnenburg M; Van Helleputte N Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4241-4245. PubMed ID: 31946805 [TBL] [Abstract][Full Text] [Related]
4. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Zhang Q; Zhou D; Zeng X Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774 [TBL] [Abstract][Full Text] [Related]
5. Signal-quality indices for the electrocardiogram and photoplethysmogram: derivation and applications to wireless monitoring. Orphanidou C; Bonnici T; Charlton P; Clifton D; Vallance D; Tarassenko L IEEE J Biomed Health Inform; 2015 May; 19(3):832-8. PubMed ID: 25069129 [TBL] [Abstract][Full Text] [Related]
6. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618 [TBL] [Abstract][Full Text] [Related]
7. Derivation of respiration rate from ambulatory ECG and PPG using Ensemble Empirical Mode Decomposition: Comparison and fusion. Orphanidou C Comput Biol Med; 2017 Feb; 81():45-54. PubMed ID: 28012294 [TBL] [Abstract][Full Text] [Related]
8. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. Jeyhani V; Mahdiani S; Peltokangas M; Vehkaoja A Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5952-5. PubMed ID: 26737647 [TBL] [Abstract][Full Text] [Related]
9. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises. Pankaj ; Kumar A; Komaragiri R; Kumar M Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340 [TBL] [Abstract][Full Text] [Related]
10. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications. Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948 [TBL] [Abstract][Full Text] [Related]
11. Noninvasive Blood Glucose Monitoring Using Spatiotemporal ECG and PPG Feature Fusion and Weight-Based Choquet Integral Multimodel Approach. Li J; Ma J; Omisore OM; Liu Y; Tang H; Ao P; Yan Y; Wang L; Nie Z IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):14491-14505. PubMed ID: 37289613 [TBL] [Abstract][Full Text] [Related]
12. Robust PPG motion artifact detection using a 1-D convolution neural network. Goh CH; Tan LK; Lovell NH; Ng SC; Tan MP; Lim E Comput Methods Programs Biomed; 2020 Nov; 196():105596. PubMed ID: 32580054 [TBL] [Abstract][Full Text] [Related]
13. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform. Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806 [TBL] [Abstract][Full Text] [Related]
14. Cuff-Less Blood Pressure Prediction from ECG and PPG Signals Using Fourier Transformation and Amplitude Randomization Preprocessing for Context Aggregation Network Training. Treebupachatsakul T; Boosamalee A; Shinnakerdchoke S; Pechprasarn S; Thongpance N Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323429 [TBL] [Abstract][Full Text] [Related]
16. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals. Bolanos M; Nazeran H; Haltiwanger E Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4289-94. PubMed ID: 17946618 [TBL] [Abstract][Full Text] [Related]
17. Robust PPG-Based Mental Workload Assessment System Using Wearable Devices. Beh WK; Wu YH; Wu AY IEEE J Biomed Health Inform; 2023 May; 27(5):2323-2333. PubMed ID: 34962889 [TBL] [Abstract][Full Text] [Related]
18. A novel CS-NET architecture based on the unification of CNN, SVM and super-resolution spectrogram to monitor and classify blood pressure using photoplethysmography. Pankaj ; Kumar A; Komaragiri R; Kumar M Comput Methods Programs Biomed; 2023 Oct; 240():107716. PubMed ID: 37542944 [TBL] [Abstract][Full Text] [Related]
19. Feasibility Study of Deep Neural Network for Heart Rate Estimation from Wearable Photoplethysmography and Acceleration Signals. Chung H; Ko H; Lee H; Lee J Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3633-3636. PubMed ID: 31946663 [TBL] [Abstract][Full Text] [Related]
20. Optimized Signal Quality Assessment for Photoplethysmogram Signals Using Feature Selection. Mohagheghian F; Han D; Peitzsch A; Nishita N; Ding E; Dickson EL; DiMezza D; Otabil EM; Noorishirazi K; Scott J; Lessard D; Wang Z; Whitcomb C; Tran KV; Fitzgibbons TP; McManus DD; Chon KH IEEE Trans Biomed Eng; 2022 Sep; 69(9):2982-2993. PubMed ID: 35275809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]