These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3933912)

  • 1. Mass spectrometer monitoring of expired carbon dioxide in critically ill neonates.
    Meny RG; Bhat AM; Aranas E
    Crit Care Med; 1985 Dec; 13(12):1064-6. PubMed ID: 3933912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of expiratory carbon dioxide measurements using the coaxial and circle breathing circuits in small subjects.
    Schieber RA; Namnoum A; Sugden A; Saville AL; Orr RA
    J Clin Monit; 1985 Jul; 1(3):149-55. PubMed ID: 3938479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcutaneous carbon dioxide and oxygen tension in newborn infants: reliability of a combined monitor of oxygen tension and carbon dioxide tension.
    Fanconi S; Sigrist H
    J Clin Monit; 1988 Apr; 4(2):103-6. PubMed ID: 3131491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of PaCO2 by two noninvasive methods in the critically ill newborn infant.
    Epstein MF; Cohen AR; Feldman HA; Raemer DB
    J Pediatr; 1985 Feb; 106(2):282-6. PubMed ID: 3918157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous tissue pH and transcutaneous carbon dioxide monitoring in critically ill neonates.
    Bhat R; Kim WD; Shukla A; Vidyasagar D
    Crit Care Med; 1981 Oct; 9(10):744-9. PubMed ID: 6793312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrepancies between transcutaneous and end-tidal carbon dioxide monitoring in the critically ill neonate with respiratory distress syndrome.
    Hand IL; Shepard EK; Krauss AN; Auld PA
    Crit Care Med; 1989 Jun; 17(6):556-9. PubMed ID: 2498038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the Haldane effect to the rise of arterial Pco2 in hypoxic patients breathing oxygen.
    Luft UC; Mostyn EM; Loeppky JA; Venters MD
    Crit Care Med; 1981 Jan; 9(1):32-7. PubMed ID: 6780265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon dioxide and oxygen partial pressure in expiratory water condensate are equivalent to mixed expired carbon dioxide and oxygen.
    von Pohle WR; Anholm JD; McMillan J
    Chest; 1992 Jun; 101(6):1601-4. PubMed ID: 1600779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between expired capnogram and respiratory system resistance in critically ill patients during total ventilatory support.
    Blanch L; Fernandez R; Saura P; Baigorri F; Artigas A
    Chest; 1994 Jan; 105(1):219-23. PubMed ID: 8275734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of physiologic dead space: comparison of ventilator volumetric capnography to measurements by metabolic analyzer and volumetric CO2 monitor.
    Siobal MS; Ong H; Valdes J; Tang J
    Respir Care; 2013 Jul; 58(7):1143-51. PubMed ID: 23232740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. End tidal carbon dioxide monitoring--its reliability in neonates.
    Nangia S; Saili A; Dutta AK
    Indian J Pediatr; 1997; 64(3):389-94. PubMed ID: 10771861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive measurement of tissue carbon dioxide tension using a fiberoptic conjunctival sensor: effects of respiratory and metabolic alkalosis and acidosis.
    Kram HB; Fink S; Tsang M; Markle D; Appel PL; Shoemaker WC
    Crit Care Med; 1988 Mar; 16(3):280-4. PubMed ID: 3125006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of end-tidal carbon dioxide monitoring via distal gas samples in ventilated neonates.
    Jin Z; Yang M; Lin R; Huang W; Wang J; Hu Z; Shu Q
    Pediatr Neonatol; 2017 Aug; 58(4):370-375. PubMed ID: 28511794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting dead space ventilation in critically ill patients using clinically available data.
    Frankenfield DC; Alam S; Bekteshi E; Vender RL
    Crit Care Med; 2010 Jan; 38(1):288-91. PubMed ID: 19789453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mainstream end-tidal carbon dioxide monitoring in ventilated neonates.
    Bhat YR; Abhishek N
    Singapore Med J; 2008 Mar; 49(3):199-203. PubMed ID: 18363000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a mainstream capnometer and end-tidal carbon dioxide monitoring in mechanically ventilated infants.
    Meredith KS; Monaco FJ
    Pediatr Pulmonol; 1990; 9(4):254-9. PubMed ID: 2124347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of dead-space ventilation in patients with acute respiratory distress syndrome: a prospective observational study.
    Doorduin J; Nollet JL; Vugts MP; Roesthuis LH; Akankan F; van der Hoeven JG; van Hees HW; Heunks LM
    Crit Care; 2016 May; 20(1):121. PubMed ID: 27145818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of noninvasive measurements of carbon dioxide tension during withdrawal from mechanical ventilation.
    Healey CJ; Fedullo AJ; Swinburne AJ; Wahl GW
    Crit Care Med; 1987 Aug; 15(8):764-8. PubMed ID: 3111790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. End-tidal carbon dioxide measurement in preterm infants with low birth weight.
    Lin HJ; Huang CT; Hsiao HF; Chiang MC; Jeng MJ
    PLoS One; 2017; 12(10):e0186408. PubMed ID: 29040312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of partial pressure of carbon dioxide in expired gas and arterial blood at three different ventilation states in apneic chickens (Gallus domesticus) during air sac insufflation anesthesia.
    Paré M; Ludders JW; Erb HN
    Vet Anaesth Analg; 2013 May; 40(3):245-56. PubMed ID: 23331534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.