These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 39339410)

  • 1. Electrospun Nanofiber-Based Biosensors for Foodborne Bacteria Detection.
    Yang H; Yan S; Yang T
    Molecules; 2024 Sep; 29(18):. PubMed ID: 39339410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of foodborne pathogens in contaminated food using nanomaterial-based electrochemical biosensors.
    Flores-Ramírez AY; González-Estrada RR; Chacón-López MA; García-Magaña ML; Montalvo-González E; Álvarez-López A; Rodríguez-López A; López-García UM
    Anal Biochem; 2024 Oct; 693():115600. PubMed ID: 38964698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades.
    Zhang R; Belwal T; Li L; Lin X; Xu Y; Luo Z
    Compr Rev Food Sci Food Saf; 2020 Jul; 19(4):1465-1487. PubMed ID: 33337098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EIS-Based Biosensors in Foodborne Pathogen Detection with a Special Focus on Listeria monocytogenes.
    Poltronieri P; Primiceri E; Radhakrishnan R
    Methods Mol Biol; 2019; 1918():87-101. PubMed ID: 30580401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosensors for rapid and sensitive detection of Staphylococcus aureus in food.
    Rubab M; Shahbaz HM; Olaimat AN; Oh DH
    Biosens Bioelectron; 2018 May; 105():49-57. PubMed ID: 29358112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanomaterial-based aptasensors for rapid detection of foodborne pathogenic bacteria.
    Fatemi K; Lau SY; Obayomi KS; Kiew SF; Coorey R; Chung LY; Fatemi R; Heshmatipour Z; Premarathna KSD
    Anal Biochem; 2024 Dec; 695():115639. PubMed ID: 39127327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber-Optic-Based Biosensor as an Innovative Technology for Point-of-Care Testing Detection of Foodborne Pathogenic Bacteria To Defend Food and Agricultural Product Safety.
    Gu R; Duan Y; Li Y; Luo Z
    J Agric Food Chem; 2023 Jul; 71(29):10982-10988. PubMed ID: 37432923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens.
    Ferrario C; Lugli GA; Ossiprandi MC; Turroni F; Milani C; Duranti S; Mancabelli L; Mangifesta M; Alessandri G; van Sinderen D; Ventura M
    Int J Food Microbiol; 2017 Sep; 256():20-29. PubMed ID: 28578266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens.
    Tao J; Liu W; Ding W; Han R; Shen Q; Xia Y; Zhang Y; Sun W
    J Food Sci; 2020 Mar; 85(3):744-754. PubMed ID: 31999364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosensor for the detection of Listeria monocytogenes: emerging trends.
    Soni DK; Ahmad R; Dubey SK
    Crit Rev Microbiol; 2018 Sep; 44(5):590-608. PubMed ID: 29790396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges.
    Umesha S; Manukumar HM
    Crit Rev Food Sci Nutr; 2018 Jan; 58(1):84-104. PubMed ID: 26745757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens.
    Atay E; Altan A
    Compr Rev Food Sci Food Saf; 2023 Jul; 22(4):3151-3184. PubMed ID: 37222549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in the detection of pathogenic microorganisms and toxins based on field-effect transistor biosensors.
    Feng X; Li P; Xiao M; Li T; Chen B; Wang X; Wang L
    Crit Rev Food Sci Nutr; 2024; 64(25):9161-9190. PubMed ID: 37171049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of transducers as platform for the rapid detection of foodborne pathogens.
    Arora P; Sindhu A; Kaur H; Dilbaghi N; Chaudhury A
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1829-40. PubMed ID: 23329385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research progress on detection of foodborne pathogens: The more rapid and accurate answer to food safety.
    Gao R; Liu X; Xiong Z; Wang G; Ai L
    Food Res Int; 2024 Oct; 193():114767. PubMed ID: 39160035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous detection of E. coli K12 and S. aureus Using a Continuous Flow Multijunction Biosensor.
    Lee I; Jun S
    J Food Sci; 2016 Jun; 81(6):N1530-6. PubMed ID: 27096467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research progress on the detection of foodborne pathogens based on aptamer recognition.
    Guo X
    Mikrochim Acta; 2024 May; 191(6):318. PubMed ID: 38727855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in DNA-based electrochemical biosensors for the detection of foodborne pathogenic bacteria.
    Wang J; Cui X; Liang L; Li J; Pang B; Li J
    Talanta; 2024 Aug; 275():126072. PubMed ID: 38615455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of
    Song C; Wang B; Wang Y; Liu J; Wang D
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Electrospun Nanofiber-Based Electrochemical Sensors in Food Safety.
    Xu C; Tan J; Li Y
    Molecules; 2024 Sep; 29(18):. PubMed ID: 39339407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.