These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 39339418)

  • 1. Why Does the Optimal Tuning Method of the Range Separation Parameter of a Long-Range Corrected Density Functional Fail in Intramolecular Charge Transfer Excitation Calculations?
    Bae HS; Ahn DH; Song JW
    Molecules; 2024 Sep; 29(18):. PubMed ID: 39339418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge-Transfer Excitation Energies Expressed as Orbital Energies of Kohn-Sham Density Functional Theory with Long-Range Corrected Functionals.
    Hirao K; Chan B; Song JW; Bae HS
    J Phys Chem A; 2020 Oct; 124(39):8079-8087. PubMed ID: 32901484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculating Electron-Transfer Coupling with Density Functional Theory: The Long-Range-Corrected Density Functionals.
    You ZQ; Hung YC; Hsu CP
    J Phys Chem B; 2015 Jun; 119(24):7480-90. PubMed ID: 25599406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbital-Optimized Versus Time-Dependent Density Functional Calculations of Intramolecular Charge Transfer Excited States.
    Selenius E; Sigurdarson AE; Schmerwitz YLA; Levi G
    J Chem Theory Comput; 2024 May; 20(9):3809-3822. PubMed ID: 38695313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TD-CI simulation of the electronic optical response of molecules in intense fields II: comparison of DFT functionals and EOM-CCSD.
    Sonk JA; Schlegel HB
    J Phys Chem A; 2011 Oct; 115(42):11832-40. PubMed ID: 21923137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why do TD-DFT excitation energies of BODIPY/Aza-BODIPY families largely deviate from experiment? Answers from electron correlated and multireference methods.
    Momeni MR; Brown A
    J Chem Theory Comput; 2015 Jun; 11(6):2619-32. PubMed ID: 26575559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Range Corrected DFT Calculations of First Hyperpolarizabilities and Excitation Energies of Metal Alkynyl Complexes.
    Kodikara MS; Stranger R; Humphrey MG
    Chemphyschem; 2018 Jun; 19(12):1537-1546. PubMed ID: 29569849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertical ionization potential benchmarks from Koopmans prediction of Kohn-Sham theory with long-range corrected (LC) functional.
    Hirao K; Bae HS; Song JW; Chan B
    J Phys Condens Matter; 2022 Mar; 34(19):. PubMed ID: 35158348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Singularity Correction for Long-Range-Corrected Density Functional Theory with Plane-Wave Basis Sets.
    Kawashima Y; Hirao K
    J Phys Chem A; 2017 Mar; 121(9):2035-2045. PubMed ID: 28199126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical Assessment of TD-DFT for Excited States of Open-Shell Systems: I. Doublet-Doublet Transitions.
    Li Z; Liu W
    J Chem Theory Comput; 2016 Jan; 12(1):238-60. PubMed ID: 26672389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of DFT methods for molecular orbital eigenvalue calculations.
    Zhang G; Musgrave CB
    J Phys Chem A; 2007 Mar; 111(8):1554-61. PubMed ID: 17279730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A long-range-corrected time-dependent density functional theory.
    Tawada Y; Tsuneda T; Yanagisawa S; Yanai T; Hirao K
    J Chem Phys; 2004 May; 120(18):8425-33. PubMed ID: 15267767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-excitation energy calculations with a long-range corrected hybrid exchange-correlation functional including a short-range Gaussian attenuation (LCgau-BOP).
    Song JW; Watson MA; Nakata A; Hirao K
    J Chem Phys; 2008 Nov; 129(18):184113. PubMed ID: 19045392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge-transfer excited states in a pi-stacked adenine dimer, as predicted using long-range-corrected time-dependent density functional theory.
    Lange AW; Rohrdanz MA; Herbert JM
    J Phys Chem B; 2008 May; 112(20):6304-8. PubMed ID: 18438995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why are time-dependent density functional theory excitations in solids equal to band structure energy gaps for semilocal functionals, and how does nonlocal Hartree-Fock-type exchange introduce excitonic effects?
    Izmaylov AF; Scuseria GE
    J Chem Phys; 2008 Jul; 129(3):034101. PubMed ID: 18647010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Prediction of the Energies of Q
    Belosludov RV; Nevonen D; Rhoda HM; Sabin JR; Nemykin VN
    J Phys Chem A; 2019 Jan; 123(1):132-152. PubMed ID: 30512955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of Excited State Potential Energy Surfaces on the Spatial Overlap of the Kohn-Sham Orbitals and the Amount of Nonlocal Hartree-Fock Exchange in Time-Dependent Density Functional Theory.
    Plötner J; Tozer DJ; Dreuw A
    J Chem Theory Comput; 2010 Aug; 6(8):2315-24. PubMed ID: 26613488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of How Well Long-Range-Corrected Density Functionals Satisfy the Ionization Energy Theorem.
    Kanchanakungwankul S; Truhlar DG
    J Chem Theory Comput; 2021 Aug; 17(8):4823-4830. PubMed ID: 34319716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the influence of end-capped acceptors modification on photovoltaic properties of non-fullerene fused ring compounds: a DFT/TD-DFT study.
    Khalid M; Fatima N; Arshad M; Adeel M; Braga AAC; Ahamad T
    RSC Adv; 2024 Jun; 14(29):20441-20453. PubMed ID: 38946775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronically excited states of vitamin B12: benchmark calculations including time-dependent density functional theory and correlated ab initio methods.
    Kornobis K; Kumar N; Wong BM; Lodowski P; Jaworska M; Andruniów T; Ruud K; Kozlowski PM
    J Phys Chem A; 2011 Feb; 115(7):1280-92. PubMed ID: 21280654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.