These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 39339435)
1. Effects of Antisolvent Treatment on Copper(I) Thiocyanate Hole Transport Layer in n-i-p Perovskite Solar Cells. Jung S; Choi S; Shin W; Oh H; Kim N; Kim S; Kim N; Kim K; Lee H Molecules; 2024 Sep; 29(18):. PubMed ID: 39339435 [TBL] [Abstract][Full Text] [Related]
2. Improvement of Thermal Stability and Photoelectric Performance of Cs Liu Y; Li B; Xu J; Yao J Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727336 [TBL] [Abstract][Full Text] [Related]
3. Effect of Humidity on Crystal Growth of CuSCN for Perovskite Solar Cell Applications. Kogo A; Murakami TN Chemphyschem; 2023 Apr; 24(8):e202200832. PubMed ID: 36594411 [TBL] [Abstract][Full Text] [Related]
4. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Matebese F; Taziwa R; Mutukwa D Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572658 [No Abstract] [Full Text] [Related]
5. Methylammonium Compensation Effects in MAPbI Kim G; Kwon N; Lee D; Kim M; Kim M; Lee Y; Kim W; Hyeon D; Kim B; Jeong MS; Hong J; Yang J ACS Appl Mater Interfaces; 2022 Feb; 14(4):5203-5210. PubMed ID: 35050584 [TBL] [Abstract][Full Text] [Related]
6. Efficient and Stable CuSCN-based Perovskite Solar Cells Achieved by Interfacial Engineering with Amidinothiourea. Tang Z; Yao D; Li Y; Li C; Xia T; Tian N; Wang J; Zheng G; Mo S; Long F; Zhou B ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38657125 [TBL] [Abstract][Full Text] [Related]
7. Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells. Jung M; Kim YC; Jeon NJ; Yang WS; Seo J; Noh JH; Il Seok S ChemSusChem; 2016 Sep; 9(18):2592-2596. PubMed ID: 27611720 [TBL] [Abstract][Full Text] [Related]
8. Additive Engineering of the CuSCN Hole Transport Layer for High-Performance Perovskite Semitransparent Solar Cells. Sun J; Zhang N; Wu J; Yang W; He H; Huang M; Zeng Y; Yang X; Ying Z; Qin G; Shou C; Sheng J; Ye J ACS Appl Mater Interfaces; 2022 Nov; 14(46):52223-52232. PubMed ID: 36377745 [TBL] [Abstract][Full Text] [Related]
9. Efficient and Stable Carbon-Based Perovskite Solar Cells Enabled by Mixed CuPc:CuSCN Hole Transporting Layer for Indoor Applications. Makming P; Homnan S; Ngamjarurojana A; Rimjaem S; Gardchareon A; Sagawa T; Haruta M; Pakawatpanurut P; Wongratanaphisan D; Kanjanaboos P; Intaniwet A; Ruankham P ACS Appl Mater Interfaces; 2023 Mar; 15(12):15486-15497. PubMed ID: 36939163 [TBL] [Abstract][Full Text] [Related]
10. Determining Out-of-Plane Hole Mobility in CuSCN via the Time-of-Flight Technique To Elucidate Its Function in Perovskite Solar Cells. Mohan L; Ratnasingham SR; Panidi J; Daboczi M; Kim JS; Anthopoulos TD; Briscoe J; McLachlan MA; Kreouzis T ACS Appl Mater Interfaces; 2021 Aug; 13(32):38499-38507. PubMed ID: 34365787 [TBL] [Abstract][Full Text] [Related]
11. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20. Arora N; Dar MI; Hinderhofer A; Pellet N; Schreiber F; Zakeeruddin SM; Grätzel M Science; 2017 Nov; 358(6364):768-771. PubMed ID: 28971968 [TBL] [Abstract][Full Text] [Related]
12. Interface Engineering to Eliminate Hysteresis of Carbon-Based Planar Heterojunction Perovskite Solar Cells via CuSCN Incorporation. Yang Y; Pham ND; Yao D; Fan L; Hoang MT; Tiong VT; Wang Z; Zhu H; Wang H ACS Appl Mater Interfaces; 2019 Aug; 11(31):28431-28441. PubMed ID: 31311262 [TBL] [Abstract][Full Text] [Related]
13. Formation of Highly Efficient Perovskite Solar Cells by Applying Li-Doped CuSCN Hole Conductor and Interface Treatment. Yang IS; Park YJ; Hwang Y; Yang HC; Kim J; Lee WI Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432255 [TBL] [Abstract][Full Text] [Related]
14. Interfacial Modification and Defect Passivation by the Cross-Linking Interlayer for Efficient and Stable CuSCN-Based Perovskite Solar Cells. Kim J; Lee Y; Yun AJ; Gil B; Park B ACS Appl Mater Interfaces; 2019 Dec; 11(50):46818-46824. PubMed ID: 31741386 [TBL] [Abstract][Full Text] [Related]
15. One-step electrodeposition of CuSCN/CuI nanocomposite and its hole transport-ability in inverted planar perovskite solar cells. Ramachandran K; Jeganathan C; Subbian K Nanotechnology; 2021 May; 32(32):. PubMed ID: 33951622 [TBL] [Abstract][Full Text] [Related]
16. Vacuum-Assisted Drying Process for Screen-Printable Carbon Electrodes of Perovskite Solar Cells with Enhanced Performance Based on Cuprous Thiocyanate as a Hole Transporting Layer. Wang J; Gong S; Chen Z; Yang S ACS Appl Mater Interfaces; 2021 May; 13(19):22684-22693. PubMed ID: 33947186 [TBL] [Abstract][Full Text] [Related]
17. Electronic Structure and Surface Properties of Copper Thiocyanate: A Promising Hole Transport Material for Organic Photovoltaic Cells. Odeke BA; Chung GD; Fajemisin JA; Suraj KS; Tonui DK; Tobi AR; Bewaale TC; Ajibola JA; Dzade NY Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33348691 [TBL] [Abstract][Full Text] [Related]
18. Highly efficient inverted solar cells based on perovskite grown nanostructures mediated by CuSCN. Xi Q; Gao G; Zhou H; Zhao Y; Wu C; Wang L; Guo P; Xu J Nanoscale; 2017 May; 9(18):6136-6144. PubMed ID: 28447686 [TBL] [Abstract][Full Text] [Related]
19. All-Inorganic Hydrothermally Processed Semitransparent Sb Kumar P; Eriksson M; Kharytonau DS; You S; Natile MM; Vomiero A ACS Appl Energy Mater; 2024 Feb; 7(4):1421-1432. PubMed ID: 38425380 [TBL] [Abstract][Full Text] [Related]
20. A Low-Temperature Solution-Processed CuSCN/Polymer Hole Transporting Layer Enables High Efficiency for Organic Solar Cells. Dong J; Guo J; Wang X; Dong P; Wang Z; Zhou Y; Miao Y; Zhao B; Hao Y; Wang H; Xu B; Yin S ACS Appl Mater Interfaces; 2020 Oct; 12(41):46373-46380. PubMed ID: 32945159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]