These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 39339485)
1. A Fluorescence Enhancement Sensor Based on Silver Nanoclusters Protected by Rich-G-DNA for ATP Detection. Li Y; Ren J; Meng Z; Zhang B Molecules; 2024 Sep; 29(18):. PubMed ID: 39339485 [TBL] [Abstract][Full Text] [Related]
2. The sensitive detection of ATP and ADA based on turn-on fluorescent copper/silver nanoclusters. Zhang B; Wei C Anal Bioanal Chem; 2020 Apr; 412(11):2529-2536. PubMed ID: 32043202 [TBL] [Abstract][Full Text] [Related]
3. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation. Xu J; Wei C Biosens Bioelectron; 2017 Jan; 87():422-427. PubMed ID: 27589406 [TBL] [Abstract][Full Text] [Related]
4. An aptamer-based fluorometric zearalenone assay using a lighting-up silver nanocluster probe and catalyzed by a hairpin assembly. Yin N; Yuan S; Zhang M; Wang J; Li Y; Peng Y; Bai J; Ning B; Liang J; Gao Z Mikrochim Acta; 2019 Nov; 186(12):765. PubMed ID: 31713694 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Zhu Y; Hu XC; Shi S; Gao RR; Huang HL; Zhu YY; Lv XY; Yao TM Biosens Bioelectron; 2016 May; 79():205-12. PubMed ID: 26706942 [TBL] [Abstract][Full Text] [Related]
6. Highly sensitive and selective detection of Pb Zhang B; Wei C Talanta; 2018 May; 182():125-130. PubMed ID: 29501131 [TBL] [Abstract][Full Text] [Related]
7. Detection of adenosine 5'-triphosphate by fluorescence variation of oligonucleotide-templated silver nanoclusters. Lee JD; Cang J; Chen YC; Chen WY; Ou CM; Chang HT Biosens Bioelectron; 2014 Aug; 58():266-71. PubMed ID: 24657647 [TBL] [Abstract][Full Text] [Related]
8. DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules. Zhou Z; Du Y; Dong S Biosens Bioelectron; 2011 Oct; 28(1):33-7. PubMed ID: 21802935 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence Sensors for the Detection of L-Histidine Based on Silver Nanoclusters Modulated by Copper Ions. Li Y; Li M; Hu L; Zhang B Molecules; 2024 May; 29(10):. PubMed ID: 38792029 [TBL] [Abstract][Full Text] [Related]
10. Metal-enhanced fluorescence-based core-shell Ag@SiO₂ nanoflares for affinity biosensing via target-induced structure switching of aptamer. Lu L; Qian Y; Wang L; Ma K; Zhang Y ACS Appl Mater Interfaces; 2014 Feb; 6(3):1944-50. PubMed ID: 24480015 [TBL] [Abstract][Full Text] [Related]
11. Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. Li J; Zhong X; Zhang H; Le XC; Zhu JJ Anal Chem; 2012 Jun; 84(12):5170-4. PubMed ID: 22607314 [TBL] [Abstract][Full Text] [Related]
12. A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core-shell Ag@SiO2 nanoparticles. Song Q; Peng M; Wang L; He D; Ouyang J Biosens Bioelectron; 2016 Mar; 77():237-41. PubMed ID: 26409024 [TBL] [Abstract][Full Text] [Related]
13. A label-free fluorescent molecular beacon based on DNA-templated silver nanoclusters for detection of adenosine and adenosine deaminase. Zhang M; Guo SM; Li YR; Zuo P; Ye BC Chem Commun (Camb); 2012 Jun; 48(44):5488-90. PubMed ID: 22543727 [TBL] [Abstract][Full Text] [Related]
14. Turn-on fluorescence detection of cysteine with glutathione protected silver nanoclusters. Cao N; Zhou H; Tan H; Qi R; Chen J; Zhang S; Xu J Methods Appl Fluoresc; 2019 Jun; 7(3):034004. PubMed ID: 31174198 [TBL] [Abstract][Full Text] [Related]
15. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags. Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D Talanta; 2016; 146():23-8. PubMed ID: 26695229 [TBL] [Abstract][Full Text] [Related]
16. Photoinduced electron transfer from polymer-templated Ag nanoclusters to G-quadruplex-hemin complexes for the construction of versatile biosensors and logic gate applications. Qu F; Mao B; Xue F; Xia L; You J; Song C Anal Bioanal Chem; 2018 Mar; 410(8):2211-2219. PubMed ID: 29387952 [TBL] [Abstract][Full Text] [Related]
17. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Song Q; Wang R; Sun F; Chen H; Wang Z; Na N; Ouyang J Biosens Bioelectron; 2017 Jan; 87():760-763. PubMed ID: 27649332 [TBL] [Abstract][Full Text] [Related]
18. Silver Nanoclusters Beacon as Stimuli-Responsive Versatile Platform for Multiplex DNAs Detection and Aptamer-Substrate Complexes Sensing. Liu G; Li J; Feng DQ; Zhu JJ; Wang W Anal Chem; 2017 Jan; 89(1):1002-1008. PubMed ID: 28105835 [TBL] [Abstract][Full Text] [Related]
19. A facile label-free aptasensor for detecting ATP based on fluorescence enhancement of poly(thymine)-templated copper nanoparticles. Zhou SS; Zhang L; Cai QY; Dong ZZ; Geng X; Ge J; Li ZH Anal Bioanal Chem; 2016 Sep; 408(24):6711-7. PubMed ID: 27457102 [TBL] [Abstract][Full Text] [Related]
20. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Qu F; Sun C; Lv X; You J Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]