These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39340466)
1. Development of mKate3/HaloTag7 (JFX650) and CFP/YFP Dual-Fluorescence (or Förster) Resonance Energy Transfer Pairs for Visualizing Dual-Molecular Activity. Wang W; Yang J ACS Sens; 2024 Oct; 9(10):5264-5274. PubMed ID: 39340466 [TBL] [Abstract][Full Text] [Related]
2. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools. Watabe T; Terai K; Sumiyama K; Matsuda M ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394 [TBL] [Abstract][Full Text] [Related]
3. Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer. Komatsubara AT; Matsuda M; Aoki K Sci Rep; 2015 Aug; 5():13283. PubMed ID: 26290434 [TBL] [Abstract][Full Text] [Related]
4. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
5. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
6. Biosensor Optimization Using a Förster Resonance Energy Transfer Pair Based on mScarlet Red Fluorescent Protein and an mScarlet-Derived Green Fluorescent Protein. Gohil K; Wu SY; Takahashi-Yamashiro K; Shen Y; Campbell RE ACS Sens; 2023 Feb; 8(2):587-597. PubMed ID: 36693235 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2. Mastop M; Bindels DS; Shaner NC; Postma M; Gadella TWJ; Goedhart J Sci Rep; 2017 Sep; 7(1):11999. PubMed ID: 28931898 [TBL] [Abstract][Full Text] [Related]
8. Biosensors of DsRed as FRET partner with CFP or GFP for quantitatively imaging induced activation of Rac, Cdc42 in living cells. Liu R; Ren D; Liu Y; Deng Y; Sun B; Zhang Q; Guo X Mol Imaging Biol; 2011 Jun; 13(3):424-431. PubMed ID: 20683671 [TBL] [Abstract][Full Text] [Related]
9. Improving FRET dynamic range with bright green and red fluorescent proteins. Lam AJ; St-Pierre F; Gong Y; Marshall JD; Cranfill PJ; Baird MA; McKeown MR; Wiedenmann J; Davidson MW; Schnitzer MJ; Tsien RY; Lin MZ Nat Methods; 2012 Oct; 9(10):1005-12. PubMed ID: 22961245 [TBL] [Abstract][Full Text] [Related]
10. Phospholemman phosphorylation alters its fluorescence resonance energy transfer with the Na/K-ATPase pump. Bossuyt J; Despa S; Martin JL; Bers DM J Biol Chem; 2006 Oct; 281(43):32765-73. PubMed ID: 16943195 [TBL] [Abstract][Full Text] [Related]
11. Analysis insights for three FRET pairs of chemically unlinked two-molecule FRET cytometry. Ni Z; Gale A; Johnson MS; Sedger LM Cytometry A; 2022 May; 101(5):387-399. PubMed ID: 34935263 [TBL] [Abstract][Full Text] [Related]
12. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples. Goedhart J; Vermeer JE; Adjobo-Hermans MJ; van Weeren L; Gadella TW PLoS One; 2007 Oct; 2(10):e1011. PubMed ID: 17925859 [TBL] [Abstract][Full Text] [Related]
14. A genetically encoded Förster resonance energy transfer biosensor for two-photon excitation microscopy. Kumagai Y; Kamioka Y; Yagi S; Matsuda M; Kiyokawa E Anal Biochem; 2011 Jun; 413(2):192-9. PubMed ID: 21352796 [TBL] [Abstract][Full Text] [Related]
15. Some secrets of fluorescent proteins: distinct bleaching in various mounting fluids and photoactivation of cyan fluorescent proteins at YFP-excitation. Malkani N; Schmid JA PLoS One; 2011 Apr; 6(4):e18586. PubMed ID: 21490932 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642 [TBL] [Abstract][Full Text] [Related]
17. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy. Vermeer JE; Van Munster EB; Vischer NO; Gadella TW J Microsc; 2004 May; 214(Pt 2):190-200. PubMed ID: 15102066 [TBL] [Abstract][Full Text] [Related]
18. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through. Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866 [TBL] [Abstract][Full Text] [Related]
19. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells. Warren SC; Margineanu A; Katan M; Dunsby C; French PM Int J Mol Sci; 2015 Jun; 16(7):14695-716. PubMed ID: 26133241 [TBL] [Abstract][Full Text] [Related]
20. Visualization of the activation of the histamine H3 receptor (H3R) using novel fluorescence resonance energy transfer biosensors and their potential application to the study of H3R pharmacology. Liu Y; Zeng H; Pediani JD; Ward RJ; Chen LY; Wu N; Ma L; Tang M; Yang Y; An S; Guo XX; Hao Q; Xu TR FEBS J; 2018 Jun; 285(12):2319-2336. PubMed ID: 29701013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]