These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3934147)

  • 1. Inhibition of glucoamylases from a Rhizopus sp. and Aspergillus saitoi by aminoalcohol derivatives.
    Iwama M; Takahashi T; Inokuchi N; Koyama T; Irie M
    J Biochem; 1985 Aug; 98(2):341-7. PubMed ID: 3934147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of glucoamylases from Rhizopus sp. with 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide.
    Iwama M; Ohtsuki R; Takahashi T; Irie M
    J Biochem; 1984 Aug; 96(2):329-36. PubMed ID: 6438070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of a glucoamylase from Aspergillus saitoi with 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide.
    Inokuchi N; Iwama M; Takahashi T; Irie M
    J Biochem; 1982 Jan; 91(1):125-33. PubMed ID: 6802809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of a minor glucoamylase from Aspergillus saitoi with 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide metho p-toluenesulfonate.
    Koyama T; Inokuchi N; Iwama M; Irie M
    J Biochem; 1985 Feb; 97(2):633-41. PubMed ID: 3924906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxyl groups and tryptophan residues in the active site of Rhizopus niveus glucoamylase.
    Inokuchi R
    J Basic Microbiol; 1999; 39(5-6):311-23. PubMed ID: 10629972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungal glucoamylases.
    Manjunath P; Shenoy BC; Raghavendra Rao MR
    J Appl Biochem; 1983; 5(4-5):235-60. PubMed ID: 6434506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification of glucoamylase by acarbose (BAY g-5421) affinity chromatography.
    Ono K; Smith EE
    Biotechnol Appl Biochem; 1986; 8(2-3):201-9. PubMed ID: 3091050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of isomaltose and maltose to the glucoamylase from Aspergillus niger, as studied by fluorescence spectrophotometry and steady-state kinetics.
    Ohnishi M; Matsumoto T; Yamanaka T; Hiromi K
    Carbohydr Res; 1990 Sep; 204():187-96. PubMed ID: 2279245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the properties of glucoamylases from Rhizopus niveus and Aspergillus niger.
    Pazur JH; Liu BL; Miskiel FJ
    Biotechnol Appl Biochem; 1990 Feb; 12(1):63-78. PubMed ID: 2106901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris.
    Mertens JA; Braker JD; Jordan DB
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2197-213. PubMed ID: 20549574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of biochemical properties of glucoamylases from the filamentous fungi Penicillium and Aspergillus.
    Volkov PV; Rozhkova AM; Semenova MV; Zorov IN; Sinitsyn AP
    Biochemistry (Mosc); 2013 Oct; 78(10):1180-9. PubMed ID: 24237153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static and kinetic studies on the binding of Streptomyces trehalase inhibitor SGI with Rhizopus glucoamylase. Comparison with glucose and gluconolactone.
    Tanaka A; Ohnishi M; Hiromi K; Miyata S; Murao S
    J Biochem; 1982 Jan; 91(1):1-9. PubMed ID: 6461639
    [No Abstract]   [Full Text] [Related]  

  • 13. Structure-function relationships in the catalytic and starch binding domains of glucoamylase.
    Coutinho PM; Reilly PJ
    Protein Eng; 1994 Mar; 7(3):393-400. PubMed ID: 8177888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and some properties of three forms of glucoamylase from a Rhizopus species.
    Takahashi T; Tsuchida Y; Irie M
    J Biochem; 1978 Nov; 84(5):1183-94. PubMed ID: 32172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanism of fungal glucoamylase as defined by mutagenesis of Asp176, Glu179 and Glu180 in the enzyme from Aspergillus awamori.
    Sierks MR; Ford C; Reilly PJ; Svensson B
    Protein Eng; 1990 Jan; 3(3):193-8. PubMed ID: 1970434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of an extracellular glucoamylase from a diastatic strain of Saccharomyces cerevisiae.
    Kleinman MJ; Wilkinson AE; Wright IP; Evans IH; Bevan EA
    Biochem J; 1988 Jan; 249(1):163-70. PubMed ID: 3124820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-bromosuccinimide oxidation of a glucoamylase from Aspergillus saitoi.
    Inokuchi N; Takahashi T; Yoshimoto A; Irie M
    J Biochem; 1982 May; 91(5):1661-8. PubMed ID: 6807973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR spectroscopy of exchangeable protons of glucoamylase and of complexes with inhibitors in the 9-15-ppm range.
    Firsov LM; Neustroev KN; Aleshin AE; Metzler CM; Metzler DE; Scott RD; Stoffer B; Christensen T; Svensson B
    Eur J Biochem; 1994 Jul; 223(1):293-302. PubMed ID: 8033904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of temperature and additives on the thermal stability of glucoamylase from Aspergillus niger.
    Liu Y; Meng Z; Shi R; Zhan L; Hu W; Xiang H; Xie Q
    J Microbiol Biotechnol; 2015 Jan; 25(1):33-43. PubMed ID: 25179903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of human digestive enzymes by hydrogenated malto-oligosaccharides.
    Würsch P; Del Vedovo S
    Int J Vitam Nutr Res; 1981; 51(2):161-5. PubMed ID: 6169675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.