These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 39341947)

  • 41. Helical Antimicrobial Peptide Foldamers Containing Non-proteinogenic Amino Acids.
    Yokoo H; Hirano M; Misawa T; Demizu Y
    ChemMedChem; 2021 Apr; 16(8):1226-1233. PubMed ID: 33565721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.
    Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J
    Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. InverPep: A database of invertebrate antimicrobial peptides.
    Gómez EA; Giraldo P; Orduz S
    J Glob Antimicrob Resist; 2017 Mar; 8():13-17. PubMed ID: 27888793
    [TBL] [Abstract][Full Text] [Related]  

  • 44. AMPpred-MFA: An Interpretable Antimicrobial Peptide Predictor with a Stacking Architecture, Multiple Features, and Multihead Attention.
    Li C; Zou Q; Jia C; Zheng J
    J Chem Inf Model; 2024 Apr; 64(7):2393-2404. PubMed ID: 37799091
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antimicrobial peptide identification using multi-scale convolutional network.
    Su X; Xu J; Yin Y; Quan X; Zhang H
    BMC Bioinformatics; 2019 Dec; 20(1):730. PubMed ID: 31870282
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PiTE: TCR-epitope Binding Affinity Prediction Pipeline using Transformer-based Sequence Encoder.
    Zhang P; Bang S; Lee H
    Pac Symp Biocomput; 2023; 28():347-358. PubMed ID: 36540990
    [TBL] [Abstract][Full Text] [Related]  

  • 47. De Novo Antimicrobial Peptide Design with Feedback Generative Adversarial Networks.
    Zervou MA; Doutsi E; Pantazis Y; Tsakalides P
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure, Function, and Physicochemical Properties of Pore-forming Antimicrobial Peptides.
    Goki NH; Tehranizadeh ZA; Saberi MR; Khameneh B; Bazzaz BSF
    Curr Pharm Biotechnol; 2024; 25(8):1041-1057. PubMed ID: 37921126
    [TBL] [Abstract][Full Text] [Related]  

  • 49. NeuroPred-PLM: an interpretable and robust model for neuropeptide prediction by protein language model.
    Wang L; Huang C; Wang M; Xue Z; Wang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36892166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides.
    Shi G; Kang X; Dong F; Liu Y; Zhu N; Hu Y; Xu H; Lao X; Zheng H
    Nucleic Acids Res; 2022 Jan; 50(D1):D488-D496. PubMed ID: 34390348
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CELA-MFP: a contrast-enhanced and label-adaptive framework for multi-functional therapeutic peptides prediction.
    Fang Y; Luo M; Ren Z; Wei L; Wei DQ
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 39038935
    [TBL] [Abstract][Full Text] [Related]  

  • 52. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data.
    Sidorczuk K; Gagat P; Pietluch F; Kała J; Rafacz D; Bąkała L; Słowik J; Kolenda R; Rödiger S; Fingerhut LCHW; Cooke IR; Mackiewicz P; Burdukiewicz M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35988923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. AIPs-SnTCN: Predicting Anti-Inflammatory Peptides Using fastText and Transformer Encoder-Based Hybrid Word Embedding with Self-Normalized Temporal Convolutional Networks.
    Raza A; Uddin J; Almuhaimeed A; Akbar S; Zou Q; Ahmad A
    J Chem Inf Model; 2023 Nov; 63(21):6537-6554. PubMed ID: 37905969
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting Antimicrobial Peptides Using ESMFold-Predicted Structures and ESM-2-Based Amino Acid Features with Graph Deep Learning.
    Cordoves-Delgado G; García-Jacas CR
    J Chem Inf Model; 2024 May; 64(10):4310-4321. PubMed ID: 38739853
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel family of defensin-like peptides from Hermetia illucens with antibacterial properties.
    Fahmy L; Generalovic T; Ali YM; Seilly D; Sivanesan K; Kalmar L; Pipan M; Christie G; Grant AJ
    BMC Microbiol; 2024 May; 24(1):167. PubMed ID: 38755524
    [TBL] [Abstract][Full Text] [Related]  

  • 57. AFP-MFL: accurate identification of antifungal peptides using multi-view feature learning.
    Fang Y; Xu F; Wei L; Jiang Y; Chen J; Wei L; Wei DQ
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AIEpred: An Ensemble Predictive Model of Classifier Chain to Identify Anti-Inflammatory Peptides.
    Zhang J; Zhang Z; Pu L; Tang J; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1831-1840. PubMed ID: 31985437
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antimicrobial peptides recognition using weighted physicochemical property encoding.
    Na S; Wannigama DL; Saethang T
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707
    [TBL] [Abstract][Full Text] [Related]  

  • 60. LMCrot: an enhanced protein crotonylation site predictor by leveraging an interpretable window-level embedding from a transformer-based protein language model.
    Pratyush P; Bahmani S; Pokharel S; Ismail HD; Kc DB
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38662579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.