These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 39342043)
1. Breeding for an elite malting barley cultivar with acid soil tolerance. Huang S; Sato K; Ma JF Commun Biol; 2024 Sep; 7(1):1203. PubMed ID: 39342043 [TBL] [Abstract][Full Text] [Related]
2. An aluminum-activated citrate transporter in barley. Furukawa J; Yamaji N; Wang H; Mitani N; Murata Y; Sato K; Katsuhara M; Takeda K; Ma JF Plant Cell Physiol; 2007 Aug; 48(8):1081-91. PubMed ID: 17634181 [TBL] [Abstract][Full Text] [Related]
3. Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley. Wu L; Yu J; Shen Q; Huang L; Wu D; Zhang G BMC Genomics; 2018 Jul; 19(1):560. PubMed ID: 30064381 [TBL] [Abstract][Full Text] [Related]
4. The barley MATE gene, HvAACT1, increases citrate efflux and Al(3+) tolerance when expressed in wheat and barley. Zhou G; Delhaize E; Zhou M; Ryan PR Ann Bot; 2013 Aug; 112(3):603-12. PubMed ID: 23798600 [TBL] [Abstract][Full Text] [Related]
5. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Delhaize E; Taylor P; Hocking PJ; Simpson RJ; Ryan PR; Richardson AE Plant Biotechnol J; 2009 Jun; 7(5):391-400. PubMed ID: 19490502 [TBL] [Abstract][Full Text] [Related]
6. A new allele for aluminium tolerance gene in barley (Hordeum vulgare L.). Ma Y; Li C; Ryan PR; Shabala S; You J; Liu J; Liu C; Zhou M BMC Genomics; 2016 Mar; 17():186. PubMed ID: 26944410 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3. Zhou G; Pereira JF; Delhaize E; Zhou M; Magalhaes JV; Ryan PR J Exp Bot; 2014 Jun; 65(9):2381-90. PubMed ID: 24692647 [TBL] [Abstract][Full Text] [Related]
8. Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. Ma JF; Nagao S; Sato K; Ito H; Furukawa J; Takeda K J Exp Bot; 2004 Jun; 55(401):1335-41. PubMed ID: 15155781 [TBL] [Abstract][Full Text] [Related]
9. A new allele of acid soil tolerance gene from a malting barley variety. Bian M; Jin X; Broughton S; Zhang XQ; Zhou G; Zhou M; Zhang G; Sun D; Li C BMC Genet; 2015 Jul; 16():92. PubMed ID: 26219378 [TBL] [Abstract][Full Text] [Related]
10. Acquisition of aluminium tolerance by modification of a single gene in barley. Fujii M; Yokosho K; Yamaji N; Saisho D; Yamane M; Takahashi H; Sato K; Nakazono M; Ma JF Nat Commun; 2012 Mar; 3():713. PubMed ID: 22395604 [TBL] [Abstract][Full Text] [Related]
11. Retrotransposon Insertion and DNA Methylation Regulate Aluminum Tolerance in European Barley Accessions. Kashino-Fujii M; Yokosho K; Yamaji N; Yamane M; Saisho D; Sato K; Ma JF Plant Physiol; 2018 Oct; 178(2):716-727. PubMed ID: 30093528 [TBL] [Abstract][Full Text] [Related]
12. Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Zhao Z; Ma JF; Sato K; Takeda K Planta; 2003 Sep; 217(5):794-800. PubMed ID: 12734756 [TBL] [Abstract][Full Text] [Related]
13. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Ahmed IM; Nadira UA; Cao F; He X; Zhang G; Wu F Planta; 2016 Apr; 243(4):973-85. PubMed ID: 26748913 [TBL] [Abstract][Full Text] [Related]
14. An ATP binding cassette transporter HvABCB25 confers aluminum detoxification in wild barley. Liu W; Feng X; Cao F; Wu D; Zhang G; Vincze E; Wang Y; Chen ZH; Wu F J Hazard Mater; 2021 Jan; 401():123371. PubMed ID: 32763683 [TBL] [Abstract][Full Text] [Related]
15. Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Watts-Williams SJ; Cavagnaro TR Plant Sci; 2018 Sep; 274():163-170. PubMed ID: 30080600 [TBL] [Abstract][Full Text] [Related]
16. Comparative proteomic analysis of aluminum tolerance in tibetan wild and cultivated barleys. Dai H; Cao F; Chen X; Zhang M; Ahmed IM; Chen ZH; Li C; Zhang G; Wu F PLoS One; 2013; 8(5):e63428. PubMed ID: 23691047 [TBL] [Abstract][Full Text] [Related]
17. Advancing Sustainable Malting Practices: Aquaporins as Potential Breeding Targets for Improved Water Uptake during Controlled Germination of Barley ( O'Lone CE; Juhász A; Nye-Wood M; Moody D; Dunn H; Ral JP; Colgrave ML J Agric Food Chem; 2024 May; 72(17):10149-10161. PubMed ID: 38635353 [TBL] [Abstract][Full Text] [Related]
18. Comparative Long Non-Coding Transcriptome Analysis of Three Contrasting Barley Varieties in Response to Aluminum Stress. Feng X; Chen X; Meng Q; Song Z; Zeng J; He X; Wu F; Ma W; Liu W Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273130 [TBL] [Abstract][Full Text] [Related]
19. miR393-Mediated Auxin Signaling Regulation is Involved in Root Elongation Inhibition in Response to Toxic Aluminum Stress in Barley. Bai B; Bian H; Zeng Z; Hou N; Shi B; Wang J; Zhu M; Han N Plant Cell Physiol; 2017 Mar; 58(3):426-439. PubMed ID: 28064248 [TBL] [Abstract][Full Text] [Related]
20. Differences in physiological features associated with aluminum tolerance in Tibetan wild and cultivated barleys. Dai H; Zhao J; Ahmed IM; Cao F; Chen ZH; Zhang G; Li C; Wu F Plant Physiol Biochem; 2014 Feb; 75():36-44. PubMed ID: 24361508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]