These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 39342154)
41. COPD basal cells are primed towards secretory to multiciliated cell imbalance driving increased resilience to environmental stressors. Stoleriu MG; Ansari M; Strunz M; Schamberger A; Heydarian M; Ding Y; Voss C; Schneider JJ; Gerckens M; Burgstaller G; Castelblanco A; Kauke T; Fertmann J; Schneider C; Behr J; Lindner M; Stacher-Priehse E; Irmler M; Beckers J; Eickelberg O; Schubert B; Hauck SM; Schmid O; Hatz RA; Stoeger T; Schiller HB; Hilgendorff A Thorax; 2024 May; 79(6):524-537. PubMed ID: 38286613 [TBL] [Abstract][Full Text] [Related]
42. Human epididymis protein 4 aggravates airway inflammation and remodeling in chronic obstructive pulmonary disease. Zhan Y; Chen J; Wu J; Gu Y; Huang Q; Deng Z; Chen S; Wu X; Lv Y; Zeng Z; Xie J Respir Res; 2022 May; 23(1):120. PubMed ID: 35550579 [TBL] [Abstract][Full Text] [Related]
43. Vitamin D Modulates the Response of Bronchial Epithelial Cells Exposed to Cigarette Smoke Extract. Mathyssen C; Serré J; Sacreas A; Everaerts S; Maes K; Verleden S; Verlinden L; Verstuyf A; Pilette C; Gayan-Ramirez G; Vanaudenaerde B; Janssens W Nutrients; 2019 Sep; 11(9):. PubMed ID: 31500220 [TBL] [Abstract][Full Text] [Related]
44. Decreased airway expression of vascular endothelial growth factor in cigarette smoke-induced emphysema in mice and COPD patients. Suzuki M; Betsuyaku T; Nagai K; Fuke S; Nasuhara Y; Kaga K; Kondo S; Hamamura I; Hata J; Takahashi H; Nishimura M Inhal Toxicol; 2008 Feb; 20(3):349-59. PubMed ID: 18300052 [TBL] [Abstract][Full Text] [Related]
45. Intermittent exposure to whole cigarette smoke alters the differentiation of primary small airway epithelial cells in the air-liquid interface culture. Gindele JA; Kiechle T; Benediktus K; Birk G; Brendel M; Heinemann F; Wohnhaas CT; LeBlanc M; Zhang H; Strulovici-Barel Y; Crystal RG; Thomas MJ; Stierstorfer B; Quast K; Schymeinsky J Sci Rep; 2020 Apr; 10(1):6257. PubMed ID: 32277131 [TBL] [Abstract][Full Text] [Related]
46. MicroRNA-497 functions as an inflammatory suppressor via targeting DDX3Y and modulating toll-like receptor 4/NF-κB in cigarette smoke extract-stimulated human bronchial epithelial cells. Jia R; Zhao XF J Gene Med; 2020 Jan; 22(1):e3137. PubMed ID: 31696986 [TBL] [Abstract][Full Text] [Related]
47. Exosome-encapsulated lncRNA HOTAIRM1 contributes to PM Guo H; Fei L; Yu H; Li Y; Feng Y; Wu S; Wang Y Sci China Life Sci; 2024 May; 67(5):970-985. PubMed ID: 38332218 [TBL] [Abstract][Full Text] [Related]
48. Andrographolide simultaneously augments Nrf2 antioxidant defense and facilitates autophagic flux blockade in cigarette smoke-exposed human bronchial epithelial cells. Tan WSD; Liao W; Peh HY; Vila M; Dong J; Shen HM; Wong WSF Toxicol Appl Pharmacol; 2018 Dec; 360():120-130. PubMed ID: 30291937 [TBL] [Abstract][Full Text] [Related]
49. Cigarette smoke-induced disruption of bronchial epithelial tight junctions is prevented by transforming growth factor-β. Schamberger AC; Mise N; Jia J; Genoyer E; Yildirim AÖ; Meiners S; Eickelberg O Am J Respir Cell Mol Biol; 2014 Jun; 50(6):1040-52. PubMed ID: 24358952 [TBL] [Abstract][Full Text] [Related]
50. Ginsenoside Rg1 Attenuates Cigarette Smoke-Induced Pulmonary Epithelial-Mesenchymal Transition via Inhibition of the TGF- Guan S; Xu W; Han F; Gu W; Song L; Ye W; Liu Q; Guo X Biomed Res Int; 2017; 2017():7171404. PubMed ID: 29104873 [TBL] [Abstract][Full Text] [Related]
51. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Hoffmann RF; Zarrintan S; Brandenburg SM; Kol A; de Bruin HG; Jafari S; Dijk F; Kalicharan D; Kelders M; Gosker HR; Ten Hacken NH; van der Want JJ; van Oosterhout AJ; Heijink IH Respir Res; 2013 Oct; 14(1):97. PubMed ID: 24088173 [TBL] [Abstract][Full Text] [Related]
52. Exosomal microRNA-21 derived from bronchial epithelial cells is involved in aberrant epithelium-fibroblast cross-talk in COPD induced by cigarette smoking. Xu H; Ling M; Xue J; Dai X; Sun Q; Chen C; Liu Y; Zhou L; Liu J; Luo F; Bian Q; Liu Q Theranostics; 2018; 8(19):5419-5433. PubMed ID: 30555555 [No Abstract] [Full Text] [Related]
53. MiR-3202 protects smokers from chronic obstructive pulmonary disease through inhibiting FAIM2: An in vivo and in vitro study. Shen W; Liu J; Fan M; Wang S; Zhang Y; Wen L; Wang R; Wei W; Li N; Zhang Y; Zhao G Exp Cell Res; 2018 Jan; 362(2):370-377. PubMed ID: 29208459 [TBL] [Abstract][Full Text] [Related]
55. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking. Yamada K; Asai K; Nagayasu F; Sato K; Ijiri N; Yoshii N; Imahashi Y; Watanabe T; Tochino Y; Kanazawa H; Hirata K BMC Pulm Med; 2016 Feb; 16():27. PubMed ID: 26861788 [TBL] [Abstract][Full Text] [Related]
56. Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial-mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract. Lu L; Luo F; Liu Y; Liu X; Shi L; Lu X; Liu Q Toxicol Appl Pharmacol; 2015 Dec; 289(2):276-85. PubMed ID: 26415832 [TBL] [Abstract][Full Text] [Related]
57. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke. Berman R; Jiang D; Wu Q; Chu HW Int J Chron Obstruct Pulmon Dis; 2016; 11():1279-86. PubMed ID: 27354786 [TBL] [Abstract][Full Text] [Related]
58. Effects of cigarette smoke on barrier function and tight junction proteins in the bronchial epithelium: protective role of cathelicidin LL-37. Tatsuta M; Kan-O K; Ishii Y; Yamamoto N; Ogawa T; Fukuyama S; Ogawa A; Fujita A; Nakanishi Y; Matsumoto K Respir Res; 2019 Nov; 20(1):251. PubMed ID: 31706310 [TBL] [Abstract][Full Text] [Related]
59. Phenotypical changes in a differentiating immortalized bronchial epithelial cell line after exposure to mainstream cigarette smoke and e-cigarette vapor. Aufderheide M; Emura M Exp Toxicol Pathol; 2017 Jul; 69(6):393-401. PubMed ID: 28372928 [TBL] [Abstract][Full Text] [Related]
60. Electronic Cigarette (E-Cigarette) Vapor Exposure Alters the Streptococcus pneumoniae Transcriptome in a Nicotine-Dependent Manner without Affecting Pneumococcal Virulence. Bagale K; Paudel S; Cagle H; Sigel E; Kulkarni R Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31791951 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]