These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3934239)

  • 1. Phosphorylation of the regulatory subunit of type I cyclic AMP-dependent protein kinase by its catalytic subunit.
    Huang LC; Villar-Palasi C; Kochevar LE; Charlton JP; King LS; Huang CH
    J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(5):485-97. PubMed ID: 3934239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of functional domains of the regulatory subunit from cAMP-dependent protein kinase isozyme I.
    Rannels SR; Corbin JD
    J Cyclic Nucleotide Res; 1980; 6(3):201-15. PubMed ID: 6255020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of cyclic AMP- and cyclic GMP-dependent protein kinases from rat skeletal muscle.
    Johanson R; Maddox AM; Washington J; Steiner AL
    J Cyclic Nucleotide Protein Phosphor Res; 1986-1987; 11(6):411-20. PubMed ID: 3121702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of the regulatory subunit of type I cAMP-dependent protein kinase on phosphoprotein phosphatase.
    Srivastava AK; Khandelwal RL; Chiasson JL; Haman A
    Biochem Int; 1988 Feb; 16(2):303-10. PubMed ID: 2835051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of control for cAMP-dependent protein kinase from skeletal muscle.
    Beavo JA; Bechtel PJ; Krebs EG
    Adv Cyclic Nucleotide Res; 1975; 5():241-51. PubMed ID: 165668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CK2-mediated phosphorylation of a type II regulatory subunit of cAMP-dependent protein kinase from the mollusk Mytilus galloprovincialis.
    Bardales JR; Hellman U; Villamarín JA
    Arch Biochem Biophys; 2007 May; 461(1):130-7. PubMed ID: 17379180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cyclic AMP-dependent pig brain protein kinase: subunit structure, mechanism of autophosphorylation and holoenzyme dissociation under cyclic AMP action].
    Ul'masov KhA; Nesterova MV; Severin Es
    Biokhimiia; 1980 May; 45(5):835-44. PubMed ID: 6246982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heparin, a powerful inhibition of type II casein kinases, stimulates the phosphorylation of some protein substrates by the catalytic subunit of cAMP-dependent protein kinase.
    Meggio F; Donella-Deana A; Pinna LA
    Biochem Int; 1983 Mar; 6(3):427-32. PubMed ID: 6591921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase.
    Herberg FW; Taylor SS; Dostmann WR
    Biochemistry; 1996 Mar; 35(9):2934-42. PubMed ID: 8608131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of calmodulin by the catalytic subunit of casein kinase II is inhibited by the regulatory subunit.
    Bidwai AP; Reed JC; Glover CV
    Arch Biochem Biophys; 1993 Jan; 300(1):265-70. PubMed ID: 8424662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Separation of catalytic and regulatory subunits of pigeon breast muscle protein kinase].
    Iusupova GI; Meshkova NP
    Biokhimiia; 1978 Jan; 43(1):89-93. PubMed ID: 203342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major 56,000-dalton, soluble phosphoprotein present in bovine sperm is the regulatory subunit of a type II cAMP-dependent protein kinase.
    Paupard MC; MacLeod J; Wasco W; Orr GA
    J Cell Biochem; 1988 Jun; 37(2):161-75. PubMed ID: 3397399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylative neuromodulation of the regulatory subunit of cyclic AMP-dependent protein kinase type II in skeletal muscle.
    McLane JA; Squinto SP; Yeoh HC; Held IR
    J Neurosci Res; 1985; 14(2):229-38. PubMed ID: 2995690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Soluble cAMP-dependent protein kinases from the rabbit myometrium].
    Babich LG; Kondratiuk TP; Kurskiĭ MD
    Biokhimiia; 1983 May; 48(5):732-8. PubMed ID: 6307399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional changes in the regulatory subunit of the type II cyclic adenosine 3':5'-monophosphate-dependent protein kinase isozyme during normal and neoplastic lung development.
    Butley MS; Beer DG; Malkinson AM
    Cancer Res; 1984 Jun; 44(6):2689-97. PubMed ID: 6327022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a synthetic peptide as a selective substrate for glycogen synthase kinase 3.
    Wang QM; Roach PJ; Fiol CJ
    Anal Biochem; 1994 Aug; 220(2):397-402. PubMed ID: 7978284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation and dephosphorylation of carbamoyl-phosphate synthetase II complex of rat ascites hepatoma cells.
    Otsuki T; Mori M; Tatibana M
    J Biochem; 1981 May; 89(5):1367-74. PubMed ID: 6115855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic-AMP and pseudosubstrate effects on type-I A-kinase regulatory and catalytic subunit binding kinetics.
    Anand G; Taylor SS; Johnson DA
    Biochemistry; 2007 Aug; 46(32):9283-91. PubMed ID: 17658893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Interaction of N1-, N6- and C8-substituted derivatives of adenosine-5'-triphosphate with the catalytic subunit of cAMP-dependent protein kinase from rabbit skeletal muscles].
    Baranova LA; Grivennikov IA; Guliaev NN
    Biokhimiia; 1982 Nov; 47(11):1806-13. PubMed ID: 6295513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of dystrophin:effects on actin binding.
    Senter L; Ceoldo S; Petrusa MM; Salviati G
    Biochem Biophys Res Commun; 1995 Jan; 206(1):57-63. PubMed ID: 7818551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.